-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathlightning_model.py
282 lines (248 loc) · 11.7 KB
/
lightning_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#Some codes are adopted from
#https://github.com/ivanvovk/WaveGrad
#https://github.com/lmnt-com/diffwave
#https://github.com/lucidrains/denoising-diffusion-pytorch
#https://github.com/hojonathanho/diffusion
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from scipy.io.wavfile import write as swrite
from model import NuWave as model
import dataloader
from utils.tblogger import TensorBoardLoggerExpanded
import filters
from utils.stft import STFTMag
@torch.jit.script
def lognorm(pred, target):
return (pred - target).abs().mean(dim=-1).clamp(min=1e-20).log().mean()
class NuWave(pl.LightningModule):
def __init__(self, hparams, train=True):
super().__init__()
self.save_hyperparameters(hparams)
self.model = model(hparams)
self.filter_ratio = [1. / hparams.audio.ratio]
self.norm = nn.L1Loss() #loss
if not train:
self.stft = STFTMag(2048, 512)
def snr(pred, target):
return (20 *torch.log10(torch.norm(target, dim=-1) \
/torch.norm(pred -target, dim =-1).clamp(min =1e-8))).mean()
def lsd(pred, target):
sp = torch.log10(self.stft(pred).square().clamp(1e-8))
st = torch.log10(self.stft(target).square().clamp(1e-8))
return (sp - st).square().mean(dim=1).sqrt().mean()
self.snr = snr
self.lsd = lsd
self.set_noise_schedule(hparams, train)
# DDPM backbone is adopted form https://github.com/ivanvovk/WaveGrad
def set_noise_schedule(self, hparams, train=True):
self.max_step = hparams.ddpm.max_step if train \
else hparams.ddpm.infer_step
noise_schedule = eval(hparams.ddpm.noise_schedule) if train \
else eval(hparams.ddpm.infer_schedule)
self.register_buffer('betas', noise_schedule, False)
self.register_buffer('alphas', 1 - self.betas, False)
self.register_buffer('alphas_cumprod', self.alphas.cumprod(dim=0),
False)
self.register_buffer(
'alphas_cumprod_prev',
torch.cat([torch.FloatTensor([1.]), self.alphas_cumprod[:-1]]),
False)
alphas_cumprod_prev_with_last = torch.cat(
[torch.FloatTensor([1.]), self.alphas_cumprod])
self.register_buffer('sqrt_alphas_cumprod_prev',
alphas_cumprod_prev_with_last.sqrt(), False)
self.register_buffer('sqrt_alphas_cumprod', self.alphas_cumprod.sqrt(),
False)
self.register_buffer('sqrt_recip_alphas_cumprod',
(1. / self.alphas_cumprod).sqrt(), False)
self.register_buffer('sqrt_alphas_cumprod_m1',
(1. - self.alphas_cumprod).sqrt() *
self.sqrt_recip_alphas_cumprod, False)
posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) \
/ (1 - self.alphas_cumprod)
posterior_variance = torch.stack(
[posterior_variance,
torch.FloatTensor([1e-20] * self.max_step)])
posterior_log_variance_clipped = posterior_variance.max(
dim=0).values.log()
posterior_mean_coef1 = self.betas * self.alphas_cumprod_prev.sqrt() / (
1 - self.alphas_cumprod)
posterior_mean_coef2 = (1 - self.alphas_cumprod_prev
) * self.alphas.sqrt() / (1 -
self.alphas_cumprod)
self.register_buffer('posterior_log_variance_clipped',
posterior_log_variance_clipped, False)
self.register_buffer('posterior_mean_coef1',
posterior_mean_coef1, False)
self.register_buffer('posterior_mean_coef2',
posterior_mean_coef2, False)
def sample_continuous_noise_level(self, step):
rand = torch.rand_like(step, dtype=torch.float, device=step.device)
continuous_sqrt_alpha_cumprod = \
self.sqrt_alphas_cumprod_prev[step - 1] * rand \
+ self.sqrt_alphas_cumprod_prev[step] * (1. - rand)
return continuous_sqrt_alpha_cumprod.unsqueeze(-1)
def q_sample(self, y_0, step=None, noise_level=None, eps=None):
batch_size = y_0.shape[0]
if noise_level is not None:
continuous_sqrt_alpha_cumprod = noise_level
elif step is not None:
continuous_sqrt_alpha_cumprod = self.sqrt_alphas_cumprod_prev[step]
assert (step is not None or noise_level is not None)
if isinstance(eps, type(None)):
eps = torch.randn_like(y_0, device=y_0.device)
outputs = continuous_sqrt_alpha_cumprod * y_0 + (
1. - continuous_sqrt_alpha_cumprod**2).sqrt() * eps
return outputs
def q_posterior(self, y_0, y, step):
posterior_mean = self.posterior_mean_coef1[step] * y_0 \
+ self.posterior_mean_coef2[step] * y
posterior_log_variance_clipped = self.posterior_log_variance_clipped[step]
return posterior_mean, posterior_log_variance_clipped
@torch.no_grad()
def predict_start_from_noise(self, y, t, eps):
return self.sqrt_recip_alphas_cumprod[t].unsqueeze(
-1) * y - self.sqrt_alphas_cumprod_m1[t].unsqueeze(-1) * eps
# t: interger not tensor
@torch.no_grad()
def p_mean_variance(self, y, y_down, t, clip_denoised: bool):
batch_size = y.shape[0]
noise_level = self.sqrt_alphas_cumprod_prev[t + 1].repeat(
batch_size, 1)
eps_recon = self.model(y, y_down, noise_level)
y_recon = self.predict_start_from_noise(y, t, eps_recon)
if clip_denoised:
y_recon.clamp_(-1.0, 1.0)
model_mean, posterior_log_variance_clipped = self.q_posterior(
y_recon, y, t)
return model_mean, posterior_log_variance_clipped
@torch.no_grad()
def compute_inverse_dynamincs(self, y, y_down, t, clip_denoised=False):
model_mean, model_log_variance = self.p_mean_variance(
y, y_down, t, clip_denoised)
eps = torch.randn_like(y) if t > 0 else torch.zeros_like(y)
return model_mean + eps * (0.5 * model_log_variance).exp()
@torch.no_grad()
def sample(self, y_down,
start_step=None,
init_noise=True,
store_intermediate_states=False):
batch_size = y_down.shape[0]
start_step = self.max_step if start_step is None \
else min(start_step, self.max_step)
step = torch.tensor([start_step] * batch_size,
dtype=torch.long,
device=self.device)
y_t = torch.randn_like(
y_down, device=self.device) if init_noise \
else self.q_sample(y_down, step=step)
ys = [y_t]
t = start_step - 1
while t >= 0:
y_t = self.compute_inverse_dynamincs(y_t, y_down, t)
ys.append(y_t)
t -= 1
return ys if store_intermediate_states else ys[-1]
def forward(self, x, x_clean, noise_level):
x = self.model(x, x_clean, noise_level)
return x
def common_step(self, y, y_low, step):
noise_level = self.sample_continuous_noise_level(step) \
if self.training \
else self.sqrt_alphas_cumprod_prev[step].unsqueeze(-1)
eps = torch.randn_like(y, device=y.device)
y_noisy = self.q_sample(y, noise_level=noise_level, eps=eps)
eps_recon = self.model(y_noisy, y_low, noise_level)
loss = lognorm(eps_recon, eps)
return loss, y, y_low, y_noisy, eps, eps_recon
def training_step(self, batch, batch_nb):
wav, wav_l = batch
step = torch.randint(
0, self.max_step, (wav.shape[0], ), device=self.device) + 1
loss, *_ = self.common_step(wav, wav_l, step)
self.log('loss', loss, sync_dist=True)
return loss
def validation_step(self, batch, batch_nb):
wav, wav_l = batch
step = torch.randint(
0, self.max_step, (wav.shape[0], ), device=self.device) + 1
loss, y, y_low, y_noisy, eps, eps_recon = \
self.common_step(wav, wav_l, step)
self.log('val_loss', loss, sync_dist=True)
if batch_nb == 0:
i = torch.randint(0, wav.shape[0], (1, )).item()
y_recon = self.predict_start_from_noise(y_noisy, step - 1,
eps_recon)
eps_error = eps - eps_recon
self.trainer.logger.log_spectrogram(y[i], y_low[i], y_noisy[i],
y_recon[i], eps_error[i],
step[i].item(),
self.current_epoch)
self.trainer.logger.log_audio(wav[i], y_low[i], y_noisy[i],
y_recon[i], eps_error[i],
self.current_epoch)
return {
'val_loss': loss,
}
def test_step(self, batch, batch_nb):
wav, wav_l = batch
wav_up = self.sample(wav_l, self.hparams.ddpm.infer_step)
snr = self.snr(wav_up, wav)
base_snr = self.snr(wav_l, wav)
lsd = self.lsd(wav_up, wav)
base_lsd = self.lsd(wav_l, wav)
dict = {
'snr': snr,
'base_snr': base_snr,
'lsd': lsd,
'base_lsd': base_lsd,
'snr^2': snr.pow(2),
'base_snr^2': base_snr.pow(2),
'lsd^2': lsd.pow(2),
'base_lsd^2': base_lsd.pow(2)
}
if self.hparams.save:
swrite(
f'{self.hparams.log.test_result_dir}/test_{batch_nb}_up.wav',
self.hparams.audio.sr, wav_up[0].detach().cpu().numpy())
swrite(
f'{self.hparams.log.test_result_dir}/test_{batch_nb}_orig.wav',
self.hparams.audio.sr, wav[0].detach().cpu().numpy())
swrite(
f'{self.hparams.log.test_result_dir}/test_{batch_nb}_linear.wav',
self.hparams.audio.sr, wav_l[0].detach().cpu().numpy())
swrite(
f'{self.hparams.log.test_result_dir}/test_{batch_nb}_down.wav',
self.hparams.audio.sr // self.hparams.audio.ratio,
wav_l[0, ::self.hparams.audio.ratio].detach().cpu().numpy())
self.log_dict(dict)
return dict
def test_epoch_end(self, outputs):
lsd = torch.stack([x['lsd'] for x in outputs]).mean()
base_lsd = torch.stack([x['base_lsd'] for x in outputs]).mean()
snr = torch.stack([x['snr'] for x in outputs]).mean()
base_snr = torch.stack([x['base_snr'] for x in outputs]).mean()
dict = {
'snr': snr.item(),
'base_snr': base_snr.item(),
'lsd': lsd.item(),
'base_lsd': base_lsd.item(),
}
print(dict)
return
def configure_optimizers(self):
opt = torch.optim.Adam(self.parameters(),
lr=self.hparams.train.lr,
eps=self.hparams.train.opt_eps,
betas=(self.hparams.train.beta1,
self.hparams.train.beta2),
weight_decay=self.hparams.train.weight_decay)
return opt
def train_dataloader(self):
return dataloader.create_vctk_dataloader(self.hparams, 0)
def val_dataloader(self):
return dataloader.create_vctk_dataloader(self.hparams, 1)
def test_dataloader(self):
return dataloader.create_vctk_dataloader(self.hparams, 2)