-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEigenvector_Loader.py
79 lines (51 loc) · 1.35 KB
/
Eigenvector_Loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
XMIN = -1.75
XMAX = 1.75
XDIV = 23
YMIN = -1.75
YMAX = 1.75
YDIV = 23
ZMIN = 3.32
ZMAX = 7.82
ZDIV = 23
ZSTEPSIZE = (ZMAX-ZMIN)/(ZDIV-1)
print(ZSTEPSIZE)
ZArray = np.array([])
Zstart = 3.32
h = (Zstart - ZMIN)/ZSTEPSIZE
print(h)
B = np.array([])
xgrid = np.linspace(XMIN, XMAX, XDIV)
ygrid = np.linspace(YMIN, YMAX, YDIV)
zgrid = np.linspace(ZMIN, ZMAX, ZDIV)
print(zgrid)
meshx, meshy = np.meshgrid(xgrid, ygrid, sparse=False, indexing="xy")
A=(np.load("nuevectest23by231point75.npy"))
#print(A)
for val in A:
string_val = str(val)
parentremover = string_val.split('[')
keep = parentremover[1]
secondparentremover = keep.split(']')
nextkeep = secondparentremover[0]
realimg = nextkeep.split('+0.j')
realpart= float(realimg[0])
scientific_notation = "{:.4e}".format(realpart)
final = float(scientific_notation)
B = np.append(B, final)
print(B.size)
zvalues = (np.arange(h, B.size, ZDIV))
zvaluesint = zvalues.astype(int)
print(zvaluesint)
for val in zvaluesint:
ZArray = np.append(ZArray, B[val])
ZArray = np.reshape(ZArray, (XDIV, YDIV))
B = np.reshape(B, (XDIV, YDIV, ZDIV))
print(B)
print(ZArray)
ax1.plot_surface(meshx, meshy, ZArray)
plt.show()