-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathpredict.py
284 lines (264 loc) · 9.59 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
from typing import List
import argparse
import numpy as np
import torch
from collections import OrderedDict
from torchvision import transforms as T
from accelerate import Accelerator
from transformers import CLIPTokenizer
from PIL import Image
from cog import BasePredictor, Input, Path
from fastcomposer.pipeline import StableDiffusionFastCompposerPipeline
from fastcomposer.model import FastComposerModel
from fastcomposer.utils import parse_args
from fastcomposer.transforms import PadToSquare
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
args = load_default_args()
accelerator = Accelerator(mixed_precision="fp16")
device = accelerator.device
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
model = FastComposerModel.from_pretrained(args)
ckpt_file = "model/fastcomposer/pytorch_model.bin"
model.load_state_dict(torch.load(ckpt_file, map_location="cpu"))
model = model.to(dtype=weight_dtype, device=device)
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
tokenizer.add_tokens(["img"], special_tokens=True)
image_token_id = tokenizer.convert_tokens_to_ids("img")
self.pipe = StableDiffusionFastCompposerPipeline.from_pretrained(
args.pretrained_model_name_or_path, torch_dtype=weight_dtype
).to(device)
self.pipe.object_transforms = torch.nn.Sequential(
OrderedDict(
[
("pad_to_square", PadToSquare(fill=0, padding_mode="constant")),
(
"resize",
T.Resize(
(args.object_resolution, args.object_resolution),
interpolation=T.InterpolationMode.BILINEAR,
antialias=True,
),
),
("convert_to_float", T.ConvertImageDtype(torch.float32)),
]
)
)
self.pipe.unet = model.unet
self.pipe.text_encoder = model.text_encoder
self.pipe.postfuse_module = model.postfuse_module
self.pipe.image_encoder = model.image_encoder
self.pipe.image_token_id = image_token_id
self.pipe.special_tokenizer = tokenizer
del model
def predict(
self,
image1: Path = Input(description="First input image"),
image2: Path = Input(
description="Second input image, optional", default=None),
prompt: str = Input(
description='Input proper text prompts, such as "A woman img and a man img in the snow" or "A painting of a man img in the style of Van Gogh", where "img" specifies the token you want to augment and comes after the word.',
default="A man img and a man img singing in the park together.",
),
alpha: float = Input(
description="A smaller alpha aligns images with text better, but may deviate from the subject image. Increase alpha to improve identity preservation, decrease it for prompt consistency.",
default=0.7,
ge=0,
le=1,
),
num_steps: int = Input(
description="Number of diffusion steps", default=50, ge=1, le=300
),
num_images_per_prompt: int = Input(
description="Number of output images. Lower this setting if OOM.",
default=1,
ge=1,
le=4,
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance.",
ge=1.5,
le=50,
default=5.0,
),
width: int = Input(
description="Width of output image.",
default=512,
),
height: int = Input(
description="Height of output image.",
default=512,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed.", default=None
),
) -> List[Path]:
"""Run a single prediction on the model"""
image = []
for img in [image1, image2]:
if img:
image.append(Image.open(str(img)))
assert len(image) > 0, "You need to upload at least one image."
num_subject_in_text = (
np.array(self.pipe.special_tokenizer.encode(prompt))
== self.pipe.image_token_id
).sum()
assert num_subject_in_text == len(image), (
f"Number of subjects in the text description doesn't match the number of reference images, #text subjects:"
f" {num_subject_in_text} #reference image: {len(image)}"
)
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
generator = torch.Generator("cuda").manual_seed(seed)
images = self.pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
alpha_=alpha,
reference_subject_images=image,
).images
output = []
for i, img in enumerate(images):
out = f"/tmp/out_{i}.png"
img.save(out)
output.append(Path(out))
return output
def load_default_args():
return argparse.Namespace(
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
revision=None,
dataset_name=None,
dataset_config_name=None,
train_data_dir=None,
image_column="image",
caption_column="caption",
max_train_samples=None,
output_dir="log/fine_generator",
cache_dir=None,
seed=None,
center_crop=False,
random_flip=False,
train_batch_size=16,
num_train_epochs=100,
max_train_steps=None,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
learning_rate=0.0001,
scale_lr=False,
lr_scheduler="constant",
lr_warmup_steps=500,
use_8bit_adam=False,
allow_tf32=False,
use_ema=False,
non_ema_revision=None,
dataloader_num_workers=0,
adam_beta1=0.9,
adam_beta2=0.999,
adam_weight_decay=0.01,
adam_epsilon=1e-08,
max_grad_norm=1.0,
push_to_hub=False,
hub_token=None,
hub_model_id=None,
logging_dir="logs",
mixed_precision=None,
report_to=None,
local_rank=-1,
checkpointing_steps=500,
resume_from_checkpoint=None,
enable_xformers_memory_efficient_attention=False,
train_text_encoder=False,
train_image_encoder=False,
keep_only_last_checkpoint=False,
keep_interval=None,
inference_steps=50,
guidance_scale=5,
num_images_per_prompt=1,
evaluation_batch_size=4,
finetuned_model_path=None,
start_idx=0,
end_idx=50,
text_prompt_only=False,
use_multiple_conditioning=False,
start_merge_step=0,
image_encoder_type="clip",
image_encoder_name_or_path="openai/clip-vit-large-patch14",
num_image_tokens=1,
max_num_objects=4,
train_resolution=256,
object_resolution=256,
test_resolution=512,
generate_width=512,
generate_height=512,
object_appear_prob=1,
no_object_augmentation=False,
image_encoder_trainable_layers=0,
load_model=None,
uncondition_prob=0,
text_only_prob=0,
text_encoder_use_lora=False,
lora_text_encoder_r=16,
lora_text_encoder_alpha=16,
lora_text_encoder_dropout=0.1,
lora_text_encoder_bias="none",
image_encoder_use_lora=False,
lora_image_encoder_r=16,
lora_image_encoder_alpha=16,
lora_image_encoder_dropout=0.1,
lora_image_encoder_bias="none",
unet_use_lora=False,
unet_lora_alpha=1.0,
num_rows=1,
test_caption=None,
test_reference_folder=None,
load_merged_lora_model=False,
object_background_processor="random",
disable_flashattention=False,
object_types=None,
object_localization=False,
localization_layers=5,
object_localization_weight=0.01,
object_localization_loss="balanced_l1",
object_localization_threshold=1.0,
object_localization_normalize=False,
unet_lr_scale=1.0,
val_dataset_name=None,
mask_loss=False,
mask_loss_prob=0.5,
freeze_unet=False,
use_multiple_datasets=False,
num_datasets=1,
min_num_objects=None,
dataset_type="original",
retrieval_identity_path=None,
dataset_name1=None,
dataset_name2=None,
dataset_name3=None,
dataset_type1="original",
dataset_type2="original",
dataset_type3="original",
retrieval_identity_path1=None,
retrieval_identity_path2=None,
retrieval_identity_path3=None,
object_localization_skip_special_tokens=False,
balance_num_objects=False,
inference_split="eval",
num_batches=1,
)