-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathprofile_example.py
37 lines (29 loc) · 1.07 KB
/
profile_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## keras example imports
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import LSTM
## extra imports to set GPU options
import tensorflow as tf
from keras import backend as k
###################################
# TensorFlow wizardry
config = tf.ConfigProto()
# Don't pre-allocate memory; allocate as-needed
config.gpu_options.allow_growth = True
# Only allow a total of half the GPU memory to be allocated
config.gpu_options.per_process_gpu_memory_fraction = 0.5
# Create a session with the above options specified.
k.tensorflow_backend.set_session(tf.Session(config=config))
###################################
max_features = 3
model = Sequential()
model.add(Embedding(max_features, output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)