Skip to content

Latest commit

 

History

History
162 lines (117 loc) · 3.98 KB

index-usage-byov.md

File metadata and controls

162 lines (117 loc) · 3.98 KB

Using your Pinecone index

Describe index statistics

The following example returns statistics about the index example-index.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
index = pc.Index(host=os.environ.get('INDEX_HOST'))

index_stats_response = index.describe_index_stats()

Upsert vectors

The following example upserts vectors to example-index.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
index = pc.Index(host=os.environ.get('INDEX_HOST'))

upsert_response = index.upsert(
    vectors=[
        ("vec1", [0.1, 0.2, 0.3, 0.4], {"genre": "drama"}),
        ("vec2", [0.2, 0.3, 0.4, 0.5], {"genre": "action"}),
    ],
    namespace="example-namespace"
)

Query an index

The following example queries the index example-index with metadata filtering.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

query_response = index.query(
    namespace="example-namespace",
    vector=[0.1, 0.2, 0.3, 0.4],
    top_k=10,
    include_values=True,
    include_metadata=True,
    filter={
        "genre": {"$in": ["comedy", "documentary", "drama"]}
    }
)

Delete vectors

The following example deletes vectors by ID.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

delete_response = index.delete(ids=["vec1", "vec2"], namespace="example-namespace")

Fetch vectors

The following example fetches vectors by ID.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

fetch_response = index.fetch(ids=["vec1", "vec2"], namespace="example-namespace")

Update vectors

The following example updates vectors by ID.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

update_response = index.update(
    id="vec1",
    values=[0.1, 0.2, 0.3, 0.4],
    set_metadata={"genre": "drama"},
    namespace="example-namespace"
)

List vectors

The list and list_paginated methods can be used to list vector ids matching a particular id prefix. With clever assignment of vector ids, this can be used to help model hierarchical relationships between different vectors such as when there are embeddings for multiple chunks or fragments related to the same document.

The list method returns a generator that handles pagination on your behalf.

from pinecone import Pinecone

pc = Pinecone(api_key='xxx')
index = pc.Index(host='hosturl')

# To iterate over all result pages using a generator function
namespace = 'foo-namespace'
for ids in index.list(prefix='pref', limit=3, namespace=namespace):
    print(ids) # ['pref1', 'pref2', 'pref3']

    # Now you can pass this id array to other methods, such as fetch or delete.
    vectors = index.fetch(ids=ids, namespace=namespace)

There is also an option to fetch each page of results yourself with list_paginated.

from pinecone import Pinecone

pc = Pinecone(api_key='xxx')
index = pc.Index(host='hosturl')

# For manual control over pagination
results = index.list_paginated(
    prefix='pref',
    limit=3,
    namespace='foo',
    pagination_token='eyJza2lwX3Bhc3QiOiI5IiwicHJlZml4IjpudWxsfQ=='
)
print(results.namespace) # 'foo'
print([v.id for v in results.vectors]) # ['pref1', 'pref2', 'pref3']
print(results.pagination.next) # 'eyJza2lwX3Bhc3QiOiI5IiwicHJlZml4IjpudWxsfQ=='
print(results.usage) # { 'read_units': 1 }