-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIMM_CKF.m.bak
235 lines (195 loc) · 10.8 KB
/
IMM_CKF.m.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
clear all;clc;
load main1.mat
warning off
%%%%%%参数简介%%%%%%%%%%%
tic
X_imm=cell(1,3);
%对于每一个目标,在每一个时刻k,基于最大化renyi信息增量的准则,
%选择使得renyi信息增量最大的异质传感器组合(t,j),t为选中的雷达组合的序号
%j为选中的红外线组合的序号
%为此,首先将基于各种异质传感器组合的CKF滤波得出的结果保存
P_kv=cell(36*36,3);
X_kv=cell(36*36,3);
Z_kv=cell(36*36,3);
Sv1=cell(36*36,3);
P_k_k_1_qv=cell(36*36,3);
P_ka=cell(36*36,3);
X_ka=cell(36*36,3);
Z_ka=cell(36*36,3);
Sv2=cell(36*36,3);
P_k_k_1_qa=cell(36*36,3);
P_kt=cell(36*36,3);
X_kt=cell(36*36,3);
Z_kt=cell(36*36,3);
Sv3=cell(36*36,3);
P_k_k_1_qt=cell(36*36,3);
renyi_cv=zeros(36*36,400);
renyi_ca=zeros(36*36,400);
renyi_ct=zeros(36*36,400);
renyi_cv_max=zeros(1,400);
renyi_ca_max=zeros(1,400);
renyi_ct_max=zeros(1,400);
max_cv_num=zeros(1,400);
max_ca_num=zeros(1,400);
max_ct_num=zeros(1,400);
renyi_cv_max_num=cell(400,3);
renyi_ca_max_num=cell(400,3);
renyi_ct_max_num=cell(400,3);
select_cv=cell(1,400);
select_ca=cell(1,400);
select_ct=cell(1,400);
%3个目标
for num=1:3
%变量说明:以下均为cell(36*36,3)
%以匀速直线运动模型cv为例,P_kv:cv模型下存储的3个目标的更新的协方差
%X_kv:更新的状态估计
%Z_kv :量测预测值
%Sv1:新息方差估计
%P_k_k_1_qv:预测误差协方差P_k_k_1
% P_kv=cell(36*36,3);
% X_kv=cell(36*36,3);
% Z_kv=cell(36*36,3);
% Sv1=cell(36*36,3);
% P_k_k_1_qv=cell(36*36,3);
%
% P_ka=cell(36*36,3);
% X_ka=cell(36*36,3);
% Z_ka=cell(36*36,3);
% Sv2=cell(36*36,3);
% P_k_k_1_qa=cell(36*36,3);
% P_kt=cell(36*36,3);
% X_kt=cell(36*36,3);
% Z_kt=cell(36*36,3);
% Sv3=cell(36*36,3);
% P_k_k_1_qt=cell(36*36,3);
%
% renyi_cv=zeros(36*36,400);
% renyi_ca=zeros(36*36,400);
% renyi_ct=zeros(36*36,400);
%
% renyi_cv_max=zeros(1,400);
% renyi_ca_max=zeros(1,400);
% renyi_ct_max=zeros(1,400);
%
% max_cv_num=zeros(1,400);
% max_ca_num=zeros(1,400);
% max_ct_num=zeros(1,400);
%
% renyi_cv_max_num=cell(400,3);
% renyi_ca_max_num=cell(400,3);
% renyi_ct_max_num=cell(400,3);
% select_cv=cell(1,400);
% select_ca=cell(1,400);
% select_ct=cell(1,400);
%%%%%%%%%IMM滤波算法%%%%%%%%%%
%模型初始化
%H1,H2,H3模型的状态转移矩阵9*9
%G1,G2, G3模型的观测噪声矩阵 9*3
%Q1,Q2, Q3模型的过程噪声协方差矩阵3*3
%result_zA cell(1296,3)每一种异质传感器组合的观测融合值,每一列的元素分别为rbe
%xA_b xB_b xC_b 三个待跟踪目标的标准航迹,每一列的元素分别为(x,vx,ax,y,vy,ay,z,vz,az)
%转移概率
Pi=[0.9,0.05,0.05;
0.1,0.8,0.1;
0.05,0.15,0.8];
u1=1/3;
u2=1/3;
u3=1/3;
U0 = [u1,u2,u3];
x0_origin=x0;
%1~r(r=3)每个模型的状态传播参数
X1_k_1=x0_origin;X2_k_1=x0_origin; X3_k_1=x0_origin;
P0=100*eye(9); %初始状态协方差 9*9
P0_origin=P0;
% P1=P0_origin;P2=P0_origin; %1~r(r=2)每个模型的状态传播参数
P1=P0_origin;P2=P0_origin; P3=P0_origin;%1~r(r=3)每个模型的状态传播参数
x0=x0_origin;
P0=P0_origin;
x1_k_1=x0;x2_k_1=x0;x3_k_1=x0; %1~r(r=3)每个模型的状态传播参数
for k = 1:totalTime/T
%计算混合概率
%Pi转移概率 Cj=∑Pij*ui(k-1) j=1~3 i=1~3
% i
c1=Pi(1,1)*u1+Pi(2,1)*u2+Pi(3,1)*u3;
c2=Pi(1,2)*u1+Pi(2,2)*u2+Pi(3,2)*u3;
c3=Pi(1,3)*u1+Pi(2,3)*u2+Pi(3,3)*u3;
%输入混合概率 Cij(k-1)=Pij*Ci/Cj
u11=Pi(1,1)*u1/c1;u12=Pi(1,2)*u1/c2;u13=Pi(1,3)*u1/c3;%输入混合概率 Cij(k-1)=Pij*Ci/Cj
u21=Pi(2,1)*u2/c1;u22=Pi(2,2)*u2/c2;u23=Pi(2,3)*u2/c3;
u31=Pi(3,1)*u3/c1;u32=Pi(3,2)*u3/c2;u33=Pi(3,3)*u3/c3;%1129 将u32=Pi(3,2)*u2/c2做了改动
%交互计算后的第j个滤波器的输入 Xj=∑Xi(k-1|k-1)Cij i=1~3
%i
x1_m = x1_k_1*u11+x2_k_1*u21+x3_k_1*u31;
x2_m= x1_k_1*u12+x2_k_1*u22+x3_k_1*u32;
x3_m= x1_k_1*u13+x2_k_1*u23+x3_k_1*u33;
%交互计算后的模型j的协方差输入
% %Pj(k-1|k-1)=∑[Pi+(Xi-Xj交互输入)*(Xi-Xj交互输入)']Cij
% % i
p1_k_1=(P1+(x1_k_1-x1_m)*(x1_k_1-x1_m)')*u11+(P2+(x2_k_1-x1_m)*(x2_k_1-x1_m)')*u21+(P3+(x3_k_1-x1_m)*(x3_k_1-x1_m)')*u31;
p2_k_1=(P1+(x1_k_1-x2_m)*(x1_k_1-x2_m)')*u12+(P2+(x2_k_1-x2_m)*(x2_k_1-x2_m)')*u22+(P3+(x3_k_1-x2_m)*(x3_k_1-x2_m)')*u32;
p3_k_1=(P1+(x1_k_1-x3_m)*(x1_k_1-x3_m)')*u13+(P2+(x2_k_1-x3_m)*(x2_k_1-x3_m)')*u23+(P3+(x3_k_1-x3_m)*(x3_k_1-x3_m)')*u33;
%状态预测(CKF) 先计算所有可能的异质传感器组合(针对每个目标分配的异质传感器组合)的ckf滤波结果
%P_kv 、X_kv、Z_kv、Sv1、P_k_k_1_qv 均为cell(36*36 ,3)
for t=1:36
for j=1:36
for s=1:3
[P_kv{(t-1)*36+j,s },X_kv{(t-1)*36+j,s },Z_kv{(t-1)*36+j,s },Sv1{(t-1)*36+j,s },P_k_k_1_qv{(t-1)*36+j,s }] = CKF(H1,G1,Q1,C_k_CMF{(t-1)*36+j,s },result_zA{(t-1)*36+j,s }(:,k),x1_m,p1_k_1);%匀速直线运动 P_kv:滤波误差协方差 X_kv-更新的状态估计 Z_kv:量测预测值
[P_ka{(t-1)*36+j,s },X_ka{(t-1)*36+j,s },Z_ka{(t-1)*36+j,s },Sv2{(t-1)*36+j,s },P_k_k_1_qa{(t-1)*36+j,s }] = CKF(H2,G2,Q1,C_k_CMF{(t-1)*36+j,s },result_zA{(t-1)*36+j,s }(:,k),x2_m,p2_k_1);
[P_kt{(t-1)*36+j,s },X_kt{(t-1)*36+j,s },Z_kt{(t-1)*36+j,s },Sv3{(t-1)*36+j,s },P_k_k_1_qt{(t-1)*36+j,s }] = CKF(H3,G3,Q2,C_k_CMF{(t-1)*36+j,s },result_zA{(t-1)*36+j,s }(:,k),x3_m,p3_k_1);
end
end
end
%在k时刻,对于每个模型,计算异质传感器组合(t,j)的renyi信息增量,一共36*36组
% renyi_cv renyi_ca renyi_ct 均为cell(36*36, 400)
for t=1:36
for j=1:36
for s=1:3
renyi_cv((t-1)*36+j,k) = renyi_cv((t-1)*36+j,k) +1/2*log( sqrt(trace(P_kv{(t-1)*36+j,s }) /trace(P_k_k_1_qv{(t-1)*36+j,s }) ) );
renyi_ca((t-1)*36+j,k) = renyi_ca((t-1)*36+j,k) +1/2*log( sqrt( trace(P_ka{(t-1)*36+j,s }) /trace(P_k_k_1_qa{(t-1)*36+j,s })) );
renyi_ct((t-1)*36+j,k) = renyi_ct((t-1)*36+j,k) +1/2*log( sqrt(trace(P_kt{(t-1)*36+j,s }) /trace(P_k_k_1_qt{(t-1)*36+j,s }) ) );
end
end
end
% 得到k时刻,三个模型 renyi信息增量的最大值renyi_cv_max 以及最大值所在的序号max_cv_num
%renyi_cv_max renyi_ca_max renyi_ct_max 均为矩阵(1,400)
[renyi_cv_max(1,k),max_cv_num(1,k) ]=max(renyi_cv(:,k) );
[renyi_ca_max(1,k),max_ca_num(1,k) ]=max(renyi_ca(:,k) );
[renyi_ct_max(1,k),max_ct_num(1,k) ]=max(renyi_ct(:,k) );
%k时刻,第num个目标,三个模型renyi信息增量最大,异质传感器组合的序号
renyi_cv_max_num{k,num}=[ceil(max_cv_num(1,k)/36) ,max_cv_num(1,k)-36*(ceil(max_cv_num(1,k)/36)-1)];
renyi_ca_max_num{k,num}=[ceil(max_ca_num(1,k)/36) ,max_ca_num(1,k)-36*(ceil(max_ca_num(1,k)/36)-1)];
renyi_ct_max_num{k,num}= [ceil(max_ct_num(1,k)/36) ,max_ct_num(1,k) - 36*(ceil(max_ct_num(1,k)/36)-1)];
%得到了k时刻异质传感器组合的序号 ,利用选择的异质传感器组合进行状态预测(CKF)
%%%%%%%%%%%%%%% 这块有问题 %%%%%%%%%%%%%%%%%%%%%%%%%%%
[P_kv_select,X_kv_select,Z_kv_select,Sv1_select,P_k_k_1_qv_select]=CKF(H1,G1,Q1,C_k_CMF{max_cv_num(1,k),num},result_zA{max_cv_num(1,k),num}(:,k),x1_m,p1_k_1);%匀速直线运动 P_kv:滤波误差协方差 X_kv-更新的状态估计 Z_kv:量测预测值
[P_ka_select,X_ka_select,Z_ka_select,Sv2_select,P_k_k_1_qa_select]=CKF(H2,G2,Q1,C_k_CMF{max_ca_num(1,k),num},result_zA{max_ca_num(1,k),num}(:,k),x2_m,p2_k_1);
[P_kt_select,X_kt_select,Z_kt_select,Sv3_select,P_k_k_1_qt_select]=CKF(H3,G3,Q2,C_k_CMF{max_ct_num(1,k),num},result_zA{ max_ct_num(1,k),num}(:,k),x3_m,p3_k_1);
v1=result_zA{ max_cv_num(1,k),num}(:,k)-Z_kv_select(:,1);
v2=result_zA{max_ca_num(1,k),num}(:,k)-Z_ka_select(:,1);
v3=result_zA{ max_ct_num(1,k),num}(:,k)-Z_kt_select(:,1);
like1=1/((2*pi)^(length(Sv1_select)/2)*sqrt(det(Sv1_select)))*exp(-v1'*inv(Sv1_select)*v1/2);%似然函数
like2=1/((2*pi)^(length(Sv2_select)/2)*sqrt(det(Sv2_select)))*exp(-v2'*inv(Sv2_select)*v2/2);
like3=1/((2*pi)^(length(Sv3_select)/2)*sqrt(det(Sv3_select)))*exp(-v3'*inv(Sv3_select)*v3/2);
P1=P_kv_select;
P2=P_ka_select;
P3=P_kt_select;
%模型概率更新
C=like1*c1+like2*c2+like3*c3;
u1=like1*c1/C;%模型1的概率
u2=like2*c2/C;%模型2的概率
u3=like3*c3/C;%模型2的概率
%估计融合
xk=X_kv_select(:,1)*u1+X_ka_select(:,1)*u2+X_kt_select(:,1)*u3;
%迭代
x1_k_1=X_kv_select(:,1);
x2_k_1=X_ka_select(:,1);
x3_k_1=X_kt_select(:,1);
X_imm{1,num}(:,k)=xk;
disp(['第',num2str(num),'个目标,第',num2str(k),'时刻的基于最大化renyi 信息增量的融合结果已经计算完成!']);
end
end
% save IMM_CKF_all_1129_2.mat %完全修改的IMMCKF
% save IMM_CKF_1129_todraw_2.mat X_imm result_zA xA_b xB_b xC_b; %完全修改的IMMCKF做图
save IMM_CKF_all_1202.mat %完全修改的IMMCKF
save IMM_CKF_1202_todraw.mat X_imm result_zA xA_b xB_b xC_b; %完全修改的IMMCKF做图
toc