-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
182 lines (144 loc) · 5.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import pandas as pd
import csv
import folium
class Node:
# each node initially has itslef as parent and rank 0
def __init__(self, name, latitude, longitude):
self.name = name
self.rank = 0
self.lat = latitude
self.long = longitude
class Graph:
# create array of edges, array of nodes
def __init__(self):
self.graph = []
self.nodes = []
self.parent = dict()
# add node
def addNode(self, name, latitude, longitude):
node = Node(name, latitude, longitude)
self.nodes.append(node)
self.parent[node] = node
# find root of tree vertex belongs to
def find(self, u):
if self.parent[u] == u:
return u
return self.find(self.parent[u])
# connect "u" & "v" in MST
def connect(self, v, u):
rootv = self.find(v)
rootu = self.find(u)
if rootu.rank > rootv.rank:
self.parent[rootv] = rootu
else:
self.parent[rootu] = rootv
if rootu.rank == rootv.rank:
rootv.rank += 1
# make a file of cities w coords into graph
def makeGraph(inputf):
g = Graph()
for index, row in df.iterrows():
g.addNode(row['input_string'], row['latitude'], row['longitude'])
for i in range(len(g.nodes) - 1): #from array of nodes calculate weights, add edges to graph g
for j in range(i + 1, len(g.nodes)):
weight = 100 * ((g.nodes[i].lat - g.nodes[j].lat)**2 + (g.nodes[i].long - g.nodes[j].long)**2)**0.5
g.graph.append([g.nodes[i], g.nodes[j], weight])
return g
def Kruskal(g):
MST = set()
g.graph = sorted(g.graph, key=lambda item: item[2])
for i in g.graph: #for all edges
u, v, weight = i
if g.find(u) != g.find(v): #test for cycles
g.connect(u, v)
MST.add((u, v, weight))
#else not included
return MST
def Prim(g):
#Create lists MST and X
MST = set()
X = []
X.append(g.nodes[0]) # Start from the arbitrary node
while len(X) != len(g.nodes): #For each node 'x' in a graph
curr_edges = [] #we add edge from 'x' to 'i' to curr_edges
for x in X: #if 'i' is not yet in X
for i in g.nodes:
if i not in X:
weight = 100 * ((i.lat - x.lat)**2 + (i.long - x.long)**2)**0.5
curr_edges.append([i, x, weight])
#Then find the edge with the smallest weight in a curr_edges, add it to MST
curr_edges = sorted(curr_edges, key = lambda item: item[2])
edge = curr_edges[0]
MST.add((edge[0], edge[1], edge[2]))
X.append(edge[0]) #Add new node to X, repeat
return MST
def Boruvka(g):
MST = set() #resulting graph
minEdge = dict() #array of minimal edges for each CC
n = len(g.nodes) #number of CCs, initially = num of nodes (each node is a CC)
g.graph = sorted(g.graph, key=lambda item: item[2])
while len(MST) < n - 1: #while we don't have n-1 edges in MST = while we don't have 1 resulting tree that is MST
# find minimal edges for all current CCs
for i in g.graph:
u, v, weight = i
CC1 = g.find(u) #root of CC of u
CC2 = g.find(v) #root of CC of v
if CC1 != CC2: #if v, u not in the same CC
#if current edge is smaller than edge of CC in minEdge
if CC1 not in minEdge or minEdge[CC1][2] > weight:
minEdge[CC1] = [u, v, weight]
if CC2 not in minEdge or minEdge[CC2][2] > weight:
minEdge[CC2] = [u, v, weight]
#now we have minimal edges for all current CC
#add found edges to MST
for node in g.nodes:
if node in minEdge: #a node can be not in minEdge if it isn't a root of some CC
u, v, weight = minEdge[node]
CC1 = g.find(u) #root of CC of u
CC2 = g.find(v) #root of CC of v
if CC1 != CC2: #we could have connected them already if the edge was min for both
g.connect(CC1, CC2) #unite CCs current edge connects
MST.add((u, v, weight))
#clear dicitonary of minimal edges before next iteration
minEdge.clear()
return MST
def equal(set1, set2):
ans = True
for i in set1:
rev = (i[1], i[0], i[2])
if not (i in set2 or rev in set2):
ans = False
break
for i in set2:
rev = (i[1], i[0], i[2])
if not (i in set1 or rev in set1):
ans = False
break
return ans
df = pd.read_csv("Output.csv", usecols = ["input_string", "latitude", "longitude"])
g = makeGraph(df)
ansP = Prim(g)
ansB = Boruvka(g)
for i in g.nodes:
g.parent[i] = i
ansK = Kruskal(g)
data = set()
for i in ansK:
data.add((i[0].name, i[1].name, i[2]))
with open('Output1.csv', 'w') as out:
csv_out = csv.writer(out)
csv_out.writerow(['City 1', 'City 2', 'Graph'])
for row in data:
csv_out.writerow(row)
# check
if equal(ansP, ansK) and (ansK >= ansB and ansK <= ansB) and equal(ansB, ansP):
print('found MST')
coord = [-35, 149]
coord.reverse
my_map = folium.Map(location = coord)
for i in ansK:
folium.Marker([i[0].lat, i[0].long], popup=i[0].name, tooltip='Click').add_to(my_map)
folium.Marker([i[1].lat, i[1].long], popup=i[1].name, tooltip='Click').add_to(my_map)
for k in ansK:
points = [[k[0].lat, k[0].long], [k[1].lat, k[1].long]]
folium.PolyLine(points, color="purple", weight = 1, opacity = 1).add_to(my_map)