Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

for exporting r2d2+lstm to onnx, why is empty state being passed in? #50166

Open
christophpang6 opened this issue Jan 31, 2025 · 0 comments
Open

Comments

@christophpang6
Copy link

I'm trying to export a r2d2+lstm (either built in or custom lstm) to onnx. I have successfully exported a model with ppo+lstm (built in) on both ray 2.6.1 and ray 2.41

I'm having an error were state becomes empty list [].

I saw these posts about state becoming empty list( [] )/empty state.
#8560
#7693
@sven1977

In my debugging statements of exporting to onnx, i saw that len(state)==2 for (hidden, cell state) for several times. and then it sudden len(state)==0 i.e. state == []

I don't think a recurrent network should have a empty state be passed in. Is this a bug or is my code wrong somewhere? How to resolve the below error? Or which version of ray is this fixed in? Thanks.

Version

  • ray 2.6.1
  • onnx 1.16.1
  • onnx2pytorch 0.5.1
  • torch 2.5.1
  • torchvision 0.20.1
  • Python 3.9.0
  • windows 10 pro
config = (
    R2D2Config()
    .environment("CartPole-v1")  # Replace with your environment
    .framework("torch")  # Use PyTorch framework
    .training(
        model={
            "use_lstm": True,
            "max_seq_len": 50,
            "lstm_cell_size": 256,
             "fcnet_hiddens": [256],    
            "lstm_use_prev_action": False,

        }
    )
)

code

import torch
import torch.nn as nn
from ray.rllib.policy.sample_batch import SampleBatch

class ModelWrapper(nn.Module):
    def __init__(self, model):
        super(ModelWrapper, self).__init__()
        self.model = model

    def forward(self, obs, state_in_h, state_in_c, prev_actions):
        # Reshape states from (256,) as shown above in policy.compute_single_action to (1, 1, 256)
        state_in_h = state_in_h.view(1, 1, -1)  # (num_layers, batch_size, hidden_size)
        state_in_c = state_in_c.view(1, 1, -1)
        
        input_dict = {
            SampleBatch.OBS: obs,
            "state_in": [state_in_h, state_in_c],
            SampleBatch.PREV_ACTIONS: prev_actions.unsqueeze(-1) if prev_actions.dim() == 1 else prev_actions,
            "seq_lens": torch.ones(obs.size(0), dtype=torch.int32),
        }
        
        output_dict = self.model(input_dict)
        
        # Assuming the model returns a tuple: (logits, state_h, state_c)
        logits = output_dict[0]
        state_out_h = output_dict[1].squeeze(0).squeeze(0)  # Convert to 1-D (256,)
        state_out_c = output_dict[2].squeeze(0).squeeze(0)
        
        return logits, state_out_h, state_out_c

# Wrap the original model
wrapped_model = ModelWrapper(model)
wrapped_model.eval()


obs = torch.tensor([[-0.1823,  3.8495, -0.0993,  1.2273]])
state_in_h = torch.zeros(1, 1, 256)  # Initial hidden state (num_layers, batch_size, hidden_size)
state_in_c = torch.zeros(1, 1, 256)  # Initial cell state (num_layers, batch_size, hidden_size)
prev_actions = torch.zeros(1,1, dtype=torch.int64)  

# Combine inputs into a tuple for ONNX export
example_inputs = (obs, state_in_h, state_in_c, prev_actions)

# Export the model
torch.onnx.export(
    wrapped_model,
    example_inputs,
    "cartpole_r2d2_lstm.onnx",
    export_params=True,
    opset_version=17,
    do_constant_folding=True,
    input_names=["obs", "state_in_h", "state_in_c", "prev_actions"],
    output_names=["logits", "state_out_h", "state_out_c"],
    dynamic_axes={
        "obs": {0: "batch_size"},
        "prev_actions": {0: "batch_size"},
        "logits": {0: "batch_size"},
        # States are fixed-size 1-D; no dynamic axes needed
    },
)

Error:




 File "C:\Users...\cartpole_ray2_6_1_r2d2_lstm_training_to_onnx_not_working.py", line 432, in <module>       
    torch.onnx.export(
  File "C:\Users...\__init__.py", line 375, in export
    export(
  File "C:\Users...\utils.py", line 502, in export
    _export(
  File "C:\Users...\utils.py", line 1564, in _export
    graph, params_dict, torch_out = _model_to_graph(
  File "C:\Users...\utils.py", line 1113, in _model_to_graph
    graph, params, torch_out, module = _create_jit_graph(model, args)
  File "C:\Users...\utils.py", line 997, in _create_jit_graph
    graph, torch_out = _trace_and_get_graph_from_model(model, args)
  File "C:\Users...\utils.py", line 904, in _trace_and_get_graph_from_model
    trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph(
  File "C:\Users...\_trace.py", line 1500, in _get_trace_graph
    outs = ONNXTracedModule(
  File "C:\Users...\module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "C:\Users...\module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "C:\Users...\_trace.py", line 139, in forward
    graph, out = torch._C._create_graph_by_tracing(
  File "C:\Users...\_trace.py", line 130, in wrapper
    outs.append(self.inner(*trace_inputs))
  File "C:\Users...\module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "C:\Users...\module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "C:\Users...\module.py", line 1726, in _slow_forward
    result = self.forward(*input, **kwargs)
  File "C:\Users...\cartpole_ray2_6_1_r2d2_lstm_training_to_onnx_not_working.py", line 373, in forward        
    output_dict = self.model(input_dict)
  File "C:\Users...\modelv2.py", line 266, in __call__
    **res = self.forward(restored, state or [], seq_lens)** # why is [] being passed into forward for recurrent model???
  File "C:\Users...\recurrent_net.py", line 265, in forward
    return super().forward(input_dict, state, seq_lens)
  File "C:\Users...\recurrent_net.py", line 100, in forward
    output, new_state = self.forward_rnn(inputs, state, seq_lens)
  File "C:\Users...\recurrent_net.py", line 297, in forward_rnn
    inputs, [torch.unsqueeze(state[0], 0), torch.unsqueeze(state[1], 0)]
IndexError: list index out of range
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant