forked from ZuoCX1996/Loose-Inertial-Poser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_data.py
564 lines (455 loc) · 21.6 KB
/
my_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import numpy as np
import torch
from Aplus.data import *
from Aplus.data.process import add_gaussian_noise
from config import paths, joint_set
import os
from articulate.math import axis_angle_to_rotation_matrix, rotation_matrix_to_r6d, axis_angle_to_quaternion, euler_angle_to_rotation_matrix, rotation_matrix_to_euler_angle, quaternion_to_rotation_matrix
from tqdm import tqdm
from Aplus.tools.annotations import timing
import quaternion
from clothes_imu_syn import *
def amass_read_seg(path, min_len=256):
data = torch.load(path)
selected_data = []
seg_info = []
for slice in data:
# print(slice.shape)
if len(slice) < min_len:
continue
else:
selected_data.append(slice)
seg_info.append(len(slice))
data = torch.cat(selected_data, dim=0)
# print(acc_t.shape)
# index_info = seg_info_2_index_info(seg_info)
# print(index_info)
# find_seg_index(index_info, 2200)
return data, seg_info
def seg_info_2_index_info(seg_info):
index_info = [0]
for v in seg_info:
index_info.append(index_info[-1] + v)
return index_info
def find_seg_index(index_info, data_index, n_seg=0):
# index_info = np.array(index_info)
# mask = np.array(index_info.__le__(data_index), dtype='int')
# seq_index = int(mask.sum()) - 1
seq_index = -1
# n_seg = 0
if n_seg != 0:
seq_index = n_seg - 1
# 0 1 2 3 4
# 0 2 4 6 8
# print(n_seg)
# print(_index_info)
# print(len(index_info))
for v in index_info[n_seg:]:
if v <= data_index:
seq_index += 1
else:
break
# index_info = np.array(index_info)
# mask = np.array(index_info.__le__(data_index), dtype='int')
# seq_index = int(mask.sum()) - 1
# print(seq_index)
inner_index = data_index - index_info[seq_index]
return seq_index, inner_index
def bulid_rot(theta, rotation_axis):
w = np.cos(theta * np.pi / 360)
s = np.sin(theta * np.pi / 360)
x = s * rotation_axis[0]
y = s * rotation_axis[1]
z = s * rotation_axis[2]
q = quaternion.from_float_array([w, x, y, z])
q = torch.Tensor([q.w, q.x, q.y, q.z]).float()
rot = quaternion_to_rotation_matrix(q)
return rot
def amass_read(path):
data = torch.load(path)
data = torch.cat(data, dim=0)
# print(acc_t.shape)
return data
class AmassData(BaseDataset):
def __init__(self, x: torch.Tensor, y: torch.Tensor, y2=None, seq_len=20, shuffle=False, step=1):
self.x = x[::step]
self.y = y[::step]
self.y2 = y2[::step]
self.data_len = len(self.x) - seq_len
self.seq_len = seq_len
if shuffle:
self.indexer = random_index(data_len=self.data_len, seed=42)
else:
self.indexer = [i for i in range(self.data_len)]
def __len__(self):
return self.data_len
def __getitem__(self, index):
i = (index % self.data_len)
data = [self.x[self.indexer[i]:self.indexer[i] + self.seq_len],
self.y[self.indexer[i]:self.indexer[i] + self.seq_len]]
if self.y2 is not None:
data.append(self.y2[self.indexer[i]:self.indexer[i] + self.seq_len])
return tuple(data)
@staticmethod
@timing
def load_data(folder_path: str, use_elbow_angle=False, pose_type='r6d') -> dict:
"""
Load data from files. Rewrite this function to realize data loading for your project. We suggest
transform data to [torch.Tensor] and saving to a dict as the return value.
Args:
path: Path of data files
s3_type: ['r6d', 'axis_angle']
Returns:
Dict of datas.
"""
all_joint_num = len(joint_set.index_pose)
rot = amass_read(os.path.join(folder_path, 'vrot.pt'))
acc = amass_read(os.path.join(folder_path, 'vacc.pt'))
# acc = amass_read(os.path.join(folder_path, 'syn_acc_on_garment.pt'))
pose = amass_read(os.path.join(folder_path, 'pose.pt'))
# pose转为r6d
rot_dim = 3
if pose_type == 'r6d':
# 数据分2段处内存占用
data_len = len(pose)
# pose = pose.view(data_len * 24, 3)
len_pose_1 = data_len // 2
len_pose_2 = data_len - len_pose_1
pose_seg_1 = pose[:len_pose_1].view(len_pose_1 * 24, 3)
pose_seg_2 = pose[len_pose_1:].view(len_pose_2 * 24, 3)
pose_1 = axis_angle_to_rotation_matrix(pose_seg_1)
pose_1 = rotation_matrix_to_r6d(pose_1).reshape(len_pose_1, 24, 6)
pose_2 = axis_angle_to_rotation_matrix(pose_seg_2)
pose_2 = rotation_matrix_to_r6d(pose_2).reshape(len_pose_2, 24, 6)
pose = torch.cat([pose_1, pose_2], dim=0)
rot_dim = 6
# 限制范围 防止异常值干扰
acc = torch.clamp(acc, min=-60, max=60)
# acc normalization 非必须 可以只保留除30
acc = torch.cat((acc[:, :3] - acc[:, 3:], acc[:, 3:]), dim=1).bmm(rot[:, -1]) / 30
# 转换为相对根节点的旋转 非必须 可以不做
rot = torch.cat((rot[:, 3:].transpose(2, 3).matmul(rot[:, :3]), rot[:, 3:]), dim=1)
# 关节点空间坐标
joint = amass_read(os.path.join(folder_path, 'joint.pt'))
# 归一化
joint = joint - joint[:, :1, :]
# 转换到root节点下 非必须 可以不做
joint = joint.bmm(rot[:, -1])
# rot转为r6d
rot = rotation_matrix_to_r6d(rot.reshape(-1, 3, 3)).reshape(-1, 4, 6)
x_s1 = torch.cat((acc.flatten(1), rot.flatten(1)), dim=1) # imu输入
# pose_internal = pose[:, joint_set.internal_joint].reshape(len(pose), internal_joint_num * 6) # s1输出的gt
pose_upper_body = pose[:, joint_set.index_pose].reshape(len(pose), all_joint_num * rot_dim) # s2输出的gt
# 加上手部2个节点 扣除根节点
joint_upper_body = joint[:, joint_set.index_joint].reshape(len(pose), (all_joint_num+2-1) * 3)
return {'x_s1': x_s1,
# 'x_s2': x_s2,
# 'pose_internal': pose_internal,
'joint_upper_body': joint_upper_body,
'pose_all': pose_upper_body}
class DipData(BaseDataset):
def __init__(self, x: torch.Tensor, y: torch.Tensor, y2=None, seq_len=20, shuffle=False, step=1):
self.x = x[::step]
self.y = y[::step]
self.y2 = y2[::step]
self.data_len = len(self.x) - seq_len
self.seq_len = seq_len
if shuffle:
self.indexer = random_index(data_len=self.data_len, seed=42)
else:
self.indexer = [i for i in range(self.data_len)]
def __len__(self):
return self.data_len
def __getitem__(self, index):
i = (index % self.data_len)
data = [self.x[self.indexer[i]:self.indexer[i] + self.seq_len], self.y[self.indexer[i]:self.indexer[i] + self.seq_len]]
if self.y2 is not None:
data.append(self.y2[self.indexer[i]:self.indexer[i] + self.seq_len])
return tuple(data)
@staticmethod
@timing
def load_data(folder_path: str, use_elbow_angle=False, pose_type='r6d') -> dict:
"""
Load data from files. Rewrite this function to realize data loading for your project. We suggest
transform data to [torch.Tensor] and saving to a dict as the return value.
Args:
path: Path of data files
s3_type: ['r6d', 'axis_angle']
Returns:
Dict of datas.
"""
all_joint_num = len(joint_set.index_pose)
rot = torch.load(os.path.join(folder_path, 'vrot.pt'))
acc = torch.load(os.path.join(folder_path, 'vacc.pt'))
# joint = torch.load(os.path.join(folder_path, 'joint.pt')).reshape(-1, 24, 3)
pose = torch.load(os.path.join(folder_path, 'pose.pt'))
# pose转为r6d
if pose_type == 'r6d':
data_len = len(pose)
pose = pose.view(data_len * 24, 3)
pose = axis_angle_to_rotation_matrix(pose)
pose = rotation_matrix_to_r6d(pose).reshape(data_len, 24, 6)
rot_dim = 6
else:
rot_dim = 3
pose = pose.reshape(-1, 24, 3)
# 限制范围 防止异常值干扰
acc = torch.clamp(acc, min=-60, max=60)
acc = torch.cat((acc[:, :3] - acc[:, 3:], acc[:, 3:]), dim=1).bmm(rot[:, -1]) / 30
# 不进行相对加速度处理 从SMPL坐标系转到root坐标系
# acc = acc.bmm(rot[:, -1]) / 30
# 转换为相对根节点的旋转
rot = torch.cat((rot[:, 3:].transpose(2, 3).matmul(rot[:, :3]), rot[:, 3:]), dim=1)
joint = torch.load(os.path.join(folder_path, 'joint.pt')).reshape(-1, 24, 3)
# 归一化
joint = joint - joint[:, :1, :]
# 转到root坐标系
joint = joint.bmm(rot[:, -1])
# rot转为r6d
rot = rotation_matrix_to_r6d(rot.reshape(-1, 3, 3)).reshape(-1, 4, 6)
x_s1 = torch.cat((acc.flatten(1), rot.flatten(1)), dim=1) # imu输入
# pose_internal = pose[:, joint_set.internal_joint].reshape(len(pose), internal_joint_num * 6) # s1输出的gt
# x_s2 = torch.cat((x_s1.flatten(1), pose_internal.flatten(1)), dim=1) # s2的输入
# pose_external = pose[:, joint_set.external_joint].reshape(len(pose), external_joint_num * 6) # s2输出的gt
pose_upper_body = pose[:, joint_set.index_pose].reshape(len(pose), all_joint_num * rot_dim) # s2输出的gt
joint_upper_body = joint[:, joint_set.index_joint].reshape(len(pose), (all_joint_num+2-1) * 3)
return {'x_s1': x_s1,
# 'x_s2': x_s2,
# 'pose_internal': pose_internal,
'joint_upper_body': joint_upper_body,
'pose_all': pose_upper_body}
class TailorNetSynData(BaseDataset):
def __init__(self, x: torch.Tensor, y: torch.Tensor, y2=None, seq_len=20, shuffle=False, step=1):
self.x = x[::step]
self.y = y[::step]
self.y2 = y2[::step]
self.data_len = len(self.x) - seq_len
self.seq_len = seq_len
if shuffle:
self.indexer = random_index(data_len=self.data_len, seed=42)
else:
self.indexer = [i for i in range(self.data_len)]
def __len__(self):
return self.data_len
def __getitem__(self, index):
i = (index % self.data_len)
data = [self.x[self.indexer[i]:self.indexer[i] + self.seq_len], self.y[self.indexer[i]:self.indexer[i] + self.seq_len]]
if self.y2 is not None:
data.append(self.y2[self.indexer[i]:self.indexer[i] + self.seq_len])
return tuple(data)
@staticmethod
@timing
def load_data(folder_path: str, use_elbow_angle=False, pose_type='r6d') -> dict:
"""
Load data from files. Rewrite this function to realize data loading for your project. We suggest
transform data to [torch.Tensor] and saving to a dict as the return value.
Args:
path: Path of data files
s3_type: ['r6d', 'axis_angle']
Returns:
Dict of datas.
"""
all_joint_num = len(joint_set.index_pose)
rot = amass_read(os.path.join(folder_path, 'syn_rot_on_garment.pt'))
acc = amass_read(os.path.join(folder_path, 'syn_acc_on_garment.pt'))
# joint = torch.load(os.path.join(folder_path, 'joint.pt')).reshape(-1, 24, 3)
pose = amass_read(os.path.join(folder_path, 'pose.pt'))
# pose转为r6d
if pose_type == 'r6d':
# 数据分2段处内存占用
data_len = len(pose)
# pose = pose.view(data_len * 24, 3)
len_pose_1 = data_len // 2
len_pose_2 = data_len - len_pose_1
pose_seg_1 = pose[:len_pose_1].view(len_pose_1 * 24, 3)
pose_seg_2 = pose[len_pose_1:].view(len_pose_2 * 24, 3)
pose_1 = axis_angle_to_rotation_matrix(pose_seg_1)
pose_1 = rotation_matrix_to_r6d(pose_1).reshape(len_pose_1, 24, 6)
pose_2 = axis_angle_to_rotation_matrix(pose_seg_2)
pose_2 = rotation_matrix_to_r6d(pose_2).reshape(len_pose_2, 24, 6)
pose = torch.cat([pose_1, pose_2], dim=0)
rot_dim = 6
else:
rot_dim = 3
pose = pose.reshape(-1, 24, 3)
# 限制范围 防止异常值干扰
acc = torch.clamp(acc, min=-60, max=60)
acc = torch.cat((acc[:, :3] - acc[:, 3:], acc[:, 3:]), dim=1).bmm(rot[:, -1]) / 30
# 不进行相对加速度处理 从SMPL坐标系转到root坐标系
# acc = acc.bmm(rot[:, -1]) / 30
# 转换为相对根节点的旋转
rot = torch.cat((rot[:, 3:].transpose(2, 3).matmul(rot[:, :3]), rot[:, 3:]), dim=1)
joint = amass_read(os.path.join(folder_path, 'joint.pt')).reshape(-1, 24, 3)
# 归一化
joint = joint - joint[:, :1, :]
# 转到root坐标系
joint = joint.bmm(rot[:, -1])
# rot转为r6d
rot = rotation_matrix_to_r6d(rot.reshape(-1, 3, 3)).reshape(-1, 4, 6)
x_s1 = torch.cat((acc.flatten(1), rot.flatten(1)), dim=1) # imu输入
# pose_internal = pose[:, joint_set.internal_joint].reshape(len(pose), internal_joint_num * 6) # s1输出的gt
# x_s2 = torch.cat((x_s1.flatten(1), pose_internal.flatten(1)), dim=1) # s2的输入
# pose_external = pose[:, joint_set.external_joint].reshape(len(pose), external_joint_num * 6) # s2输出的gt
pose_upper_body = pose[:, joint_set.index_pose].reshape(len(pose), all_joint_num * rot_dim) # s2输出的gt
joint_upper_body = joint[:, joint_set.index_joint].reshape(len(pose), (all_joint_num+2-1) * 3)
return {'x_s1': x_s1,
'joint_upper_body': joint_upper_body,
'pose_all': pose_upper_body}
class LipData(BaseDataset):
def __init__(self, x: torch.Tensor, y: torch.Tensor, y2=None, seq_len=20, shuffle=False, step=2):
self.x = x[::step]
self.y = y[::step]
self.y2 = y2[::step]
self.data_len = len(self.x) - seq_len
self.seq_len = seq_len
if shuffle:
self.indexer = random_index(data_len=self.data_len, seed=42)
else:
self.indexer = [i for i in range(self.data_len)]
def __len__(self):
return self.data_len
def __getitem__(self, index):
i = (index % self.data_len)
data = [self.x[self.indexer[i]:self.indexer[i] + self.seq_len], self.y[self.indexer[i]:self.indexer[i] + self.seq_len]]
if self.y2 is not None:
data.append(self.y2[self.indexer[i]:self.indexer[i] + self.seq_len])
return tuple(data)
@staticmethod
@timing
def load_data(folder_path='E:\DATA\LIP-IMU', use_elbow_angle=False, pose_type='r6d', acc_scale=1, type='all', back_fix=False) -> dict:
"""
Load data from files. Rewrite this function to realize data loading for your project. We suggest
transform data to [torch.Tensor] and saving to a dict as the return value.
Args:
path: Path of data files
s3_type: ['r6d', 'axis_angle']
Returns:
Dict of datas.
"""
all_joint_num = len(joint_set.index_pose)
rot, acc, joint, pose = [], [], [], []
for root, dirs, files in os.walk(folder_path):
for dir_name in dirs:
if type != 'all':
if dir_name.find(type) >= 0:
dir_path = os.path.join(root, dir_name)
print(f'loading {dir_name}')
rot.append(torch.load(os.path.join(dir_path, 'rot.pt')))
acc.append(torch.load(os.path.join(dir_path, 'acc.pt')))
joint.append(torch.load(os.path.join(dir_path, 'joint.pt')).reshape(-1, 24, 3))
pose.append(torch.load(os.path.join(dir_path, 'pose.pt')))
else:
dir_path = os.path.join(root, dir_name)
print(f'loading {dir_name}')
rot.append(torch.load(os.path.join(dir_path, 'rot.pt')))
acc.append(torch.load(os.path.join(dir_path, 'acc.pt')))
joint.append(torch.load(os.path.join(dir_path, 'joint.pt')).reshape(-1, 24, 3))
pose.append(torch.load(os.path.join(dir_path, 'pose.pt')))
rot = torch.cat(rot, dim=0)
acc = torch.cat(acc, dim=0)
joint = torch.cat(joint, dim=0)
pose = torch.cat(pose, dim=0)
if back_fix:
rot_left, rot_right, rot_back, rot_root = rot[:, [0]], rot[:, [1]], rot[:, [2]], rot[:, [3]]
rot_back = bulid_rot(theta=180, rotation_axis=[0, 1, 0]).matmul(rot_back)
rot = torch.cat([rot_left, rot_right, rot_back, rot_root], dim=1)
print(rot.shape)
# print(rot.shape)
print(acc.shape)
print(joint.shape)
print(pose.shape)
# pose转为r6d
if pose_type == 'r6d':
data_len = len(pose)
pose = pose.view(data_len * 24, 3)
pose = axis_angle_to_rotation_matrix(pose)
pose = rotation_matrix_to_r6d(pose).reshape(data_len, 24, 6)
rot_dim = 6
else:
rot_dim = 3
pose = pose.reshape(-1, 24, 3)
acc = torch.cat((acc[:, :3] - acc[:, 3:], acc[:, 3:]), dim=1).bmm(rot[:, -1]) / 30
# 转换为相对根节点的旋转
rot = torch.cat((rot[:, 3:].transpose(2, 3).matmul(rot[:, :3]), rot[:, 3:]), dim=1)
# 归一化
joint = joint - joint[:, :1, :]
# 转到root坐标系
joint = joint.bmm(rot[:, -1])
# 转为r6d
rot = rotation_matrix_to_r6d(rot.reshape(-1, 9)).reshape(-1, 4, 6)
x_s1 = torch.cat((acc.flatten(1), rot.flatten(1)), dim=1) # imu输入
# pose_internal = pose[:, joint_set.internal_joint].reshape(len(pose), internal_joint_num * 6) # s1输出的gt
# x_s2 = torch.cat((x_s1.flatten(1), pose_internal.flatten(1)), dim=1) # s2的输入
# pose_external = pose[:, joint_set.external_joint].reshape(len(pose), external_joint_num * 6) # s2输出的gt
pose_upper_body = pose[:, joint_set.index_pose].reshape(len(pose), all_joint_num * rot_dim) # s2输出的gt
joint_upper_body = joint[:, joint_set.index_joint].reshape(len(pose), (all_joint_num+2-1) * 3)
return {'x_s1': x_s1,
'joint_upper_body': joint_upper_body,
'pose_all': pose_upper_body}
class SynPairedIMUData(BaseDataset):
def __init__(self, x: torch.Tensor, y: torch.Tensor, shuffle=True):
self.x = x
self.y = y
self.data_len = len(x)
if shuffle:
self.indexer = random_index(data_len=self.data_len, seed=42)
else:
self.indexer = [i for i in range(self.data_len)]
def __len__(self):
return self.data_len
def __getitem__(self, index):
i = (index % self.data_len)
return self.x[self.indexer[i]], self.y[self.indexer[i]]
@staticmethod
@timing
def load_data(folder_path: str, shuffle=False, normalization=True, clothes_imu_calibration=False) -> dict:
"""
Load data from files. Rewrite this function to realize data loading for your project. We suggest
transform data to [torch.Tensor] and saving to a dict as the return value.
Args:
path: Path of data files
s3_type: ['r6d', 'axis_angle']
Returns:
Dict of datas.
"""
rot_bone = amass_read(os.path.join(folder_path, 'vrot.pt'))
rot_imu = amass_read(os.path.join(folder_path, 'syn_rot_on_garment.pt'))
acc_mesh = amass_read(os.path.join(folder_path, 'vacc.pt'))
acc_imu = amass_read(os.path.join(folder_path, 'syn_acc_on_garment.pt'))
tpose_clothes_v = obj_load_vertices(path='./T-Pose_garment.obj')
tpose_rot, _ = imu_syn(tpose_clothes_v)
device2bone = tpose_rot.transpose(-2,-1)
if clothes_imu_calibration:
rot_imu =rot_imu.matmul(device2bone)
# print(device2bone)
# rot_bone = torch.load(os.path.join(folder_path, 'vrot.pt'))
# rot_imu = torch.load(os.path.join(folder_path, 'rot.pt'))
# acc_mesh = torch.load(os.path.join(folder_path, 'vacc.pt'))
# acc_imu = torch.load(os.path.join(folder_path, 'acc.pt'))
data_len = len(rot_bone)
# 防止异常值
acc_mesh = torch.clamp(acc_mesh, min=-60, max=60)
acc_imu = torch.clamp(acc_imu, min=-60, max=60)
if normalization:
# 转换为相对根节点加速度
acc_mesh = torch.cat((acc_mesh[:, :3] - acc_mesh[:, 3:], acc_mesh[:, 3:]), dim=1).bmm(rot_bone[:, -1]) / 30
acc_imu = torch.cat((acc_imu[:, :3] - acc_imu[:, 3:], acc_imu[:, 3:]), dim=1).bmm(rot_imu[:, -1]) / 30
acc_mesh = acc_mesh.reshape(data_len, -1)
acc_imu = acc_imu.reshape(data_len, -1)
if normalization:
# 转换为相对根节点的旋转
rot_bone = torch.cat((rot_bone[:, 3:].transpose(2, 3).matmul(rot_bone[:, :3]), rot_bone[:, 3:]), dim=1)
rot_imu = torch.cat((rot_imu[:, 3:].transpose(2, 3).matmul(rot_imu[:, :3]), rot_imu[:, 3:]), dim=1)
# rot转为r6d
rot_bone = rot_bone.view(data_len * 4, 3, 3)
rot_imu = rot_imu.view(data_len * 4, 3, 3)
rot_bone = rotation_matrix_to_r6d(rot_bone).reshape(data_len, -1)
rot_imu = rotation_matrix_to_r6d(rot_imu).reshape(data_len, -1)
data_mesh = torch.cat([acc_mesh, rot_bone], dim=-1)
data_garment = torch.cat([acc_imu, rot_imu], dim=-1)
if shuffle:
new_idx = random_index(data_len=len(data_mesh), seed=42)
data_mesh = data_mesh[new_idx]
data_garment = data_garment[new_idx]
return {'data_mesh': data_mesh,
'data_garment': data_garment}