forked from ZuoCX1996/Loose-Inertial-Poser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_SemoAE.py
46 lines (28 loc) · 1.48 KB
/
train_SemoAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from config import paths, joint_set
from my_data import *
from Aplus.runner import BaseEvaluator
from my_trainner import *
from my_model import *
import os
train_split, test_split = 0.95, 0.05
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dataset = SynPairedIMUData.load_data(folder_path=paths.amass_dir, shuffle=True, clothes_imu_calibration=True)
data_len = len(dataset['data_mesh'])
train_size, test_size = int(data_len*train_split), int(data_len*test_split)
model = SemoAE(feat_dim=12+24, encode_dim=16).to(device)
epoch = 1
data_train = SynPairedIMUData(x=dataset['data_garment'][:train_size], y=dataset['data_mesh'][:train_size], shuffle=True)
data_test = SynPairedIMUData(x=dataset['data_garment'][train_size:train_size+test_size], y=dataset['data_mesh'][train_size:train_size+test_size])
print(data_train.__len__())
print(data_test.__len__())
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
criterion = nn.MSELoss()
trainner = SemoAETrainner(model=model, data=data_train, optimizer=optimizer, batch_size=512, loss_func=criterion)
evaluator = SemoAEEvaluator.from_trainner(trainner, data_eval=data_test)
# trainner.restore(checkpoint_path='./checkpoint/SemoAE_10.pth', load_optimizer=True)
evaluator.run()
model_name='SemoAE'
for i in range(10):
trainner.run(epoch=epoch, evaluator=evaluator, data_shuffle=True, d_loss_weight=1)
trainner.save(folder_path='./checkpoint', model_name=model_name)
trainner.log_export(f'./log/{model_name}.xlsx')