forked from lazierthanthou/Lecture_Notes_GR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlecture4.tex
206 lines (160 loc) · 8.63 KB
/
lecture4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
\section{Differential Manifolds}
\begin{framed}
\textbf{Motivation}: So far we have dealt with topological manifolds which allow us to talk about continuity. But to talk about smoothness of curves on manifolds, or velocities along these curves, we need something like differentiability. Does the structure of topological manifold allow us to talk about differentiability? The answer is a resounding no.
So this lecture is about figuring out what structure we need to add on a topological manifold $M$ to start talking about differentiability of curves ($\mathbb{R} \to M$) on a manifold, or differentiability of functions ($M \to \mathbb{R}$) on a manifold, or differentiability of maps ($M \to N$) from one manifold $M$ to another manifold $N$.
\end{framed}
\begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=2em, column sep=3em, minimum width=1em]
{
\gamma : \mathbb{R} & U \\
& x(U) \subseteq \mathbb{R}^d \\
};
\path[->]
(m-1-1) edge node [above] {$$} (m-1-2)
edge node [sloped, anchor=center, below] {$x \circ \gamma$} (m-2-2)
(m-1-2) edge node [right] {$x$} (m-2-2);
\end{tikzpicture}
\underline{idea}. try to ``lift'' the undergraduate notion of differentiability of a curve on $\mathbb{R}^d$ to a notion of differentiability of a curve on $M$
\underline{Problem} Can this be well-defined under change of chart?
\begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
& y(U\cap V) \subseteq \mathbb{R}^d \\
\gamma : \mathbb{R} & U \cap V \neq \emptyset \\
& x(U\cap V) \subseteq \mathbb{R}^d \\
};
\path[->]
(m-2-1) edge node [auto] {$$} (m-2-2)
edge node [sloped, anchor=center, below] {$x \circ \gamma$} (m-3-2)
edge node [sloped, anchor=center, above] {$y \circ \gamma$} (m-1-2)
(m-2-2) edge node [auto] {$x$} (m-3-2)
edge node [auto] {$y$} (m-1-2)
(m-3-2) edge [bend right=40] node [right] {$y\circ x^{-1}$} (m-1-2);
\end{tikzpicture}
$x\circ \gamma$ undergraduate differentiable (``as a map $\mathbb{R} \to \mathbb{R}^d$'')
\[
\begin{gathered}
\underbrace{y\circ \gamma}_{\text{maybe only continuous, but not undergraduate differentiable} } = \underbrace{ ( \overbrace{ y\circ x^{-1}}^{\mathbb{R}^d \to \mathbb{R}^d } )}_{\text{continuous}} \circ \underbrace{ \overbrace{ (x\circ \gamma) }^{\mathbb{R}\to \mathbb{R}^d} }_{ \text{ undergrad differentiable } } = y \circ (x^{-1} \circ x) \circ \gamma
\end{gathered}
\]
At first sight, strategy does not work out.
\subsection{Compatible charts}
In section 1, we used any imaginable charts on the top. mfd. $(M,\mathcal{O})$.
To emphasize this, we may say that we took $U$ and $V$ from the \emph{maximal atlas} $\mathcal{A}$ of $(M,\mathcal{O})$.
\begin{definition}
Two charts $(U,x)$ and $(V,y)$ of a top. mfd. are called \ding{96}-compatible if
either
\begin{enumerate}
\item[(a)] $U \cap V = \emptyset$
or \item[(b)] $U\cap V \neq \emptyset$
\end{enumerate}
chart transition maps have undergraduate \ding{96} property.
EY : 20151109 e.g. since $\mathbb{R}^d \to \mathbb{R}^d$, can use undergradate \ding{96} property such as continuity or differentiability.
\[
\begin{aligned}
& y \circ x^{-1} : x(U \cap V) \subseteq \mathbb{R}^d \to y(U\cap V) \subseteq \mathbb{R}^d \\
& x\circ y^{-1} : y(U\cap V) \subseteq \mathbb{R}^d \to x(U\cap V) \subseteq \mathbb{R}^d
\end{aligned}
\]
\end{definition}
\underline{Philosophy}:
\begin{definition}
An atlas $\mathcal{A}_{\text{\ding{96}}}$ is a \ding{96}-compatible atlas if any two charts in $\mathcal{A}_{\text{\ding{96}}}$ are \ding{96}-compatible.
\end{definition}
\begin{definition}
A \textbf{\ding{96}-manifold} is a triple $(\underbrace{ M,\mathcal{O} }_{\text{top. mfd.} }, \mathcal{A}_{\text{\ding{96}}})$ \quad \, $\mathcal{A}_{\text{\ding{96}}} \subseteq \mathcal{A}_{\text{maximal}} $
\end{definition}
\begin{tabular}{ l | c l}
\ding{96} & undergraduate \ding{96} & \\
\hline
$C^0$ & $C^0(\mathbb{R}^d \to \mathbb{R}^d) =$ & continuous maps w.r.t. $\mathcal{O}$ \\
$C^1$ & $C^1(\mathbb{R}^d \to \mathbb{R}^d) = $ & differentiable (once) and is continuous \\
$C^k$ & & $k$-times continuously differentiable \\
$D^k$ & & $k$-times differentiable \\
$\vdots$ & & \\
$C^{\infty}$ & $C^{\infty}(\mathbb{R}^d \to \mathbb{R}^d)$ & \\
$\mathbin{\rotatebox[origin=c]{-90}{$\supseteq$}}$ & & \\
$C^{\omega}$ & $\exists $ multi-dim. Taylor exp. & \\
$\mathbb{C}^{\infty}$ & satisfy Cauchy-Riemann equations, pair-wise &
\end{tabular}
EY : 20151109 Schuller says: $C^k$ is easy to work with because you can judge $k$-times cont. differentiability from existence of all partial derivatives \textbf{and} their continuity. There are examples of maps that partial derivatives exist but are not $D^k$, $k$-times differentiable.
\begin{theorem}[Whitney]
% Any $C^{k\geq 1}$-manifold $(M,\mathcal{O}, \mathcal{A}_{C^{k\geq 1}})$
Any $C^{k\geq 1}$-atlas, $\mathcal{A}_{C^{k\geq 1}}$ of a topological manifold \emph{contains} a $C^{\infty}$-atlas.
Thus we may w.l.o.g. always consider $C^{\infty}$-manifolds, ``smooth manifolds'', unless we wish to define Taylor expandibility/complex differentiability \dots
\end{theorem}
EY : 20151109 Hassler Whitney \footnote{\url{http://mathoverflow.net/questions/8789/can-every-manifold-be-given-an-analytic-structure}}
\begin{definition}
A smooth manifold $(\underbrace{ M,\mathcal{O} }_{\text{top. mfd. } }, \underbrace{ \mathcal{A}}_{C^{\infty}-\text{atlas}} )$
\end{definition}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R} & M \\
& \mathbb{R}^d \\
};
\path[->]
(m-1-1) edge node [auto] {$\gamma$} (m-1-2)
edge node [auto] {$x\circ \gamma$} (m-2-2)
(m-1-2) edge node [auto] {$x$} (m-2-2);
\end{tikzpicture}
EY: 20151109 Schuller was explaining that the trajectory is real in $M$; the coordinate maps to obtain coordinates is $x\circ \gamma$
\subsection{Diffeomorphisms}
$M \xrightarrow{ \phi } N$
If $M,N$ are naked sets, the structure preserving maps are the bijections (invertible maps).
e.g. $\lbrace 1,2,3 \rbrace \to \lbrace a,b \rbrace$
\begin{definition}
$M \cong_{\text{set}} N$ (set-theoretically) isomorphic if $\exists \, $ bijection $\phi : M \to N$
\end{definition}
\underline{Examples}. $\mathbb{N} \cong_{\text{set}} \mathbb{Z}$ \\
$\mathbb{N} \cong_{\text{set}} \mathbb{Q}$ (EY: 20151109 Schuller says from diagonal counting)\\
$\mathbb{N} \cancel{\cong_{\text{set}}} \mathbb{R}$
Now $(M, \mathcal{O}_M) \cong_{\text{top}} (N,\mathcal{O}_N)$ (topl.) isomorphic $=$ ``homeomorphic'' $\exists \, $ bijection $\phi : M \to N$ \\
\phantom{ \quad \quad \, } $\phi, \phi^{-1}$ are continuous.
$(V,+,\cdot) \cong_{\text{vec}} ( W,+_w,\cdot_w)$ (EY: 20151109 vector space isomorphism) if \\
$\exists \, \text{ bijection } \phi : V \to W$ linearly
\underline{finally}
\begin{definition}
Two $C^{\infty}$-manifolds \\
$(M,\mathcal{O}_M, \mathcal{A}_M)$ and $(N,\mathcal{O}_N, \mathcal{A}_N)$ are said to be \textbf{diffeomorphic} if $\exists \, $ bijection $\phi : M \to N$ s.t.
\[
\begin{aligned} & \phi : M \to N \\
& \phi^{-1} : N \to M \end{aligned}
\]
are both $C^{\infty}$-maps
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R}^d & \mathbb{R}^e \\
M \supseteq U & V\subseteq N \\
\mathbb{R}^d & \mathbb{R}^e \\
};
\path[->]
(m-1-1) edge node [auto] {$\widetilde{y} \circ \phi \circ \widetilde{x}^{-1}$} (m-1-2)
(m-2-1) edge node [auto] {$\widetilde{x}$} (m-1-1)
edge node [auto] {$\phi$} (m-2-2)
edge node [auto] {$x$} (m-3-1)
(m-3-1) edge node [auto] {$ \substack{ y\circ \phi \circ x^{-1} \\
\text{ undergraduate } C^{\infty} }$} (m-3-2)
edge [bend left=50] node [auto] {$C^{\infty}$} (m-1-1)
(m-2-2) edge node [auto] {$\widetilde{y}$} (m-1-2)
edge node [auto] {$y$} (m-3-2)
(m-3-2) edge [bend right=50] node [auto] {$$} (m-1-2);
\end{tikzpicture}
\end{definition}
\begin{theorem}
$\# = $ number of $C^{\infty}$-manifolds one can make out of a given $C^0$-manifolds (if any) - up to diffeomorphisms.
\begin{tabular}{l | c r }
$\text{dim}M$ & $\#$ & \\
\hline
1 & 1 & Morse-Radon theorems \\
2 & 1 & Morse-Radon theorems \\
3 & 1 & Morse-Radon theorems \\
4 & uncountably infinitely many & \\
5 & finite & surgery theory \\
6 & finite & surgery theory \\
\vdots & finite & surgery theory
\end{tabular}
\end{theorem}
EY : 20151109 cf. \url{http://math.stackexchange.com/questions/833766/closed-4-manifolds-with-uncountably-many-differentiable-structures} \\
\href{http://www.maths.ed.ac.uk/~aar/papers/scorpan.pdf}{The wild world of 4-manifolds}