forked from lazierthanthou/Lecture_Notes_GR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtutorial2.tex
163 lines (127 loc) · 4.28 KB
/
tutorial2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
\section*{Tutorial Topological manifolds}
filename: \verb|Sheet_1.2.pdf|
%\exercisehead{1}
\exercisehead{4: Before the invention of the wheel}
\emph{Another one-dimensional topological manifold. Another one?}
Consider set $F^1:= \lbrace (m,n)\in \mathbb{R}^2 | m^4 + n^4=1 \rbrace$, equipped with subset topology $\left. \mathcal{O}_{\text{std}} \right|_{F^1}$
\questionhead{$x:F^1 \to \mathbb{R}$ is what?}
\solutionhead{} EY : 20150525 The tutorial video \url{https://youtu.be/ghfEQ3u_B6g} is really good and this solution is how I'd write it, but it's really the same (I needed the practice).
\[
\boxed{ \begin{aligned}
x : F^1 & \to \mathbb{R} \\
(m,n) & \mapsto m
\end{aligned} }
\]
If $m=0$, $n^4=1$ so $n=\pm 1$ so it's not injective.
Let the closed $n$-dim. upper half-space $\mathbb{H}^n \subseteq \mathbb{R}^1$. Then
\[
\begin{aligned}
\mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n \geq 0 \rbrace \\
\text{int}\mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n > 0 \rbrace \\
- \mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n \leq 0 \rbrace \\
-\text{int}\mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n <0 \rbrace
\end{aligned}
\]
\questionhead{This map $x$ may be made injective by restricting its domain to either of 2 maximal open subsets of $F^1$. Which ones?}
\solutionhead{}
Let
\[
\begin{aligned}
& U_+ = F^1 \cap \text{int}\mathbb{H}^2 \\
& U_- = F^1 \cap -\text{int}\mathbb{H}^2
\end{aligned}
\]
Look at
\[
\begin{aligned}
& x^4 = 1 - n^4 \\
\Longrightarrow & x = \pm ( 1 - n^4)^{1/4}
\end{aligned}
\]
Then for
\[
\begin{aligned}
x_+^{-1}: (-1,1) \subseteq \mathbb{R} & \to U_+ \\
m & \mapsto (m,(1-m^4)^{1/4}) \\
x_-^{-1}: (-1,1) \subseteq \mathbb{R} & \to U_- \\
m & \mapsto (m,-(1-m^4)^{1/4}) \\
\end{aligned}
\]
$x_+$,$x_-$ injective (since left inverse exists).
\questionhead{Construct injective $y$}
\solutionhead{}
Let
\[
\begin{aligned}
& V_+ = F^1 \cap \text{int}\mathbb{H}^1 \\
& V_- = F^1 \cap -\text{int}\mathbb{H}^1
\end{aligned}
\]
Then
\[
\begin{aligned}
y_+: V_+ & \to (-1,1) \subseteq \mathbb{R} \\
(m,n) & \mapsto n \\
y_-: V_- & \to (-1,1) \subseteq \mathbb{R} \\
(m,n) & \mapsto n
\end{aligned}
\]
\questionhead{Construct inverse $y^{-1}$}
\solutionhead{}
For
\[
\begin{aligned}
y_+^{-1}: (-1,1) \subseteq \mathbb{R} & \to V_+ \\
n & \mapsto ((1-n^4)^{1/4},n) \\
y_-^{-1}: (-1,1) \subseteq \mathbb{R} & \to V_- \\
n & \mapsto (-(1-n^4)^{1/4},n) \\
\end{aligned}
\]
$y_+$,$y_-$ injective (since left inverse exists).
Note $\begin{aligned} & \quad \\
& (-1,0) \notin U_+,U_- \\
& (1,0) \notin U_+,U_- \\
\end{aligned}$
and
$\begin{aligned} & \quad \\
& (0,1) \notin V_+,V_- \\
& (0,-1) \notin V_+,V_- \\
\end{aligned}$
\questionhead{construct \emph{transition map } $x \circ y^{-1}$}
\solutionhead{}
\[
\begin{aligned}
&
\begin{aligned}
x_+y_+^{-1} : (0,1) \subseteq \mathbb{R} & \to (0,1) \subseteq \mathbb{R} \\
n & \mapsto (1-n^4)^{1/4}
\end{aligned} \\
&
\begin{aligned}
x_-y_+^{-1} : (-1,0) \subseteq \mathbb{R} & \to (0,1) \subseteq \mathbb{R} \\
n & \xrightarrow{ y_+^{-1} } ( (1-n^4)^{1/4}, n) \xrightarrow{ x_- } (1-n^4)^{1/4}
\end{aligned} \\
& \begin{aligned}
x_+y_-^{-1} : (0,1) \subseteq \mathbb{R} & \to (-1,0) \subseteq \mathbb{R} \\
n & \mapsto -(1-n^4)^{1/4}
\end{aligned} \\
& \begin{aligned}
x_-y_-^{-1} : (-1,0) \subseteq \mathbb{R} & \to (-1,0) \subseteq \mathbb{R} \\
n & \mapsto -(1-n^4)^{1/4}
\end{aligned}
\end{aligned}
\]
\questionhead{\dots Does the collection of these domains and maps form an atlas of $F^1$?}
Yes, with atlas
\[
\mathcal{A} = \lbrace \begin{aligned} & (U_+,x_+) \\
& (U_-,x_-) \end{aligned}, \, \begin{aligned} & (V_+,y_+) \\ & (V_-,y_-) \end{aligned} \rbrace
\]
Clearly
\[
\begin{gathered}
U_+ \cup U_- \cup V_+ \cup V_- = (F^1 \cap \text{int}\mathbb{H}^2) \cup (F^1 \cap -\text{int}\mathbb{H}^2)\cup (F^1 \cap \text{int}\mathbb{H}^1) \cup (F^1 \cap -\text{int}\mathbb{H}^1) = \\
= F^1 \cap \mathbb{R}^2\backslash \lbrace (0,0) \rbrace = F^1
\end{gathered}
\]
and (the point is that) $x_{\pm},y_{\pm}$ are homeomorphisms of open sets of $F^1$ onto open sets of 1 dim. $\mathbb{R}^1$ (namely $(-1,1) \subseteq \mathbb{R}^1$), and so $\mathcal{A}$ is an atlas of $F^1$.