-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvid_get_square.py
68 lines (49 loc) · 2.09 KB
/
vid_get_square.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
out = 0
while(1):
ret, im = cap.read()
imgray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) # BGR to grayscale
# imgray = cv2.GaussianBlur(imgray, (3, 3), 0)
thresh = cv2.adaptiveThreshold(imgray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY_INV,35,12)
# ret, thresh = cv2.threshold(imgray,90, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # cv2.CHAIN_APPROX_NONE)
rects = [cv2.boundingRect(ctr) for ctr in contours]
max_area_rect = 0
max_area_ctr = 0
max_area = 0
for ctr in contours:
rect = cv2.boundingRect(ctr)
if(rect[2]*rect[3] > max_area):
max_area = rect[2]*rect[3]
max_area_rect = rect
max_area_ctr = ctr
# cv2.rectangle(im, (max_area_rect[0], max_area_rect[1]), (max_area_rect[0] + max_area_rect[2], max_area_rect[1] + max_area_rect[3]), (0, 0, 255), 1)
epsilon = 0.01 * cv2.arcLength(max_area_ctr, True)
approx = cv2.approxPolyDP(max_area_ctr, epsilon, True)
im = cv2.drawContours(im, [approx], -1, (0, 255, 0), 1)
# im_rect = im[max_area_rect[1]:max_area_rect[1]+max_area_rect[3], max_area_rect[0]:max_area_rect[0]+max_area_rect[2]]
if(approx.shape[0] == 4):
up_left = approx[0][0]
up_right = approx[3][0]
bottom_left = approx[1][0]
bottom_right = approx[2][0]
input_pts = np.float32([up_left,up_right,bottom_left,bottom_right])
height = max(abs(bottom_left[1] - up_left[1]), abs(up_right[1]-bottom_right[1]))
width = max(abs(bottom_left[0] - bottom_right[0]), abs(up_left[0]-up_right[0]))
output_pts = np.float32([[0, 0], [width, 0],[0, height],[width, height]])
# Compute the perspective transform M
M = cv2.getPerspectiveTransform(input_pts, output_pts)
# Apply the perspective transformation to the image
out = cv2.warpPerspective(im, M, (width, height), flags = cv2.INTER_LINEAR)
cv2.imshow("out", out)
# cv2.imwrite("out.png", out)
# cv2.imshow("title", im)
cv2.imshow("thresh", thresh)
k = cv2.waitKey(30) & 0xff
if k == 27: # 27 is ascii code for ESC
break
cap.release()
cv2.destroyAllWindows()