-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbig_model.py
96 lines (68 loc) · 3.52 KB
/
big_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
## TODO: define the convolutional neural network architecture
import torch
import torch.nn as nn
import torch.nn.functional as F
# can use the below import should you choose to initialize the weights of your Net
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## TODO: Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel
self.conv1 = nn.Conv2d(1, 32, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(64, 128, 3)
self.pool3 = nn.MaxPool2d(2, 2)
self.conv4 = nn.Conv2d(128, 256, 3)
self.pool4 = nn.MaxPool2d(2, 2)
#self.fc1 = nn.Linear(256*11*11, 12800)
#self.fc1_drop = nn.Dropout(p=0.4)
#self.fc2 = nn.Linear(12800, 6000)
self.fc1 = nn.Linear(256*11*11, 6000)
self.fc1_drop = nn.Dropout(p=0.3)
self.fc2 = nn.Linear(6000, 1000)
self.fc2_drop = nn.Dropout(p=0.3)
self.fc3 = nn.Linear(1000, 136)
## Note that among the layers to add, consider including:
# maxpooling layers, multiple conv layers, fully-connected layers, and other layers (such as dropout or batch normalization) to avoid overfitting
def forward(self, x):
## TODO: Define the feedforward behavior of this model
## x is the input image and, as an example, here you may choose to include a pool/conv step:
## x = self.pool(F.relu(self.conv1(x)))
#print ('input size',x.size())
conv1_x = F.relu(self.conv1(x))
#print ('conv1_x size',conv1_x.size())
pool1_x = self.pool1(conv1_x)
#print ('pool1_x size',pool1_x.size())
conv2_x = F.relu(self.conv2(pool1_x))
#print ('conv2_x size',conv2_x.size())
pool2_x = self.pool2(conv2_x)
#print ('pool2_x size',pool2_x.size())
conv3_x = F.relu(self.conv3(pool2_x))
#print ('conv3_x size',conv3_x.size())
pool3_x = self.pool3(conv3_x)
#print ('pool3_x size',pool3_x.size())
conv4_x = F.relu(self.conv4(pool3_x))
#print ('conv4_x size',conv4_x.size())
pool4_x = self.pool4(conv4_x)
#print ('pool4_x size',pool4_x.size())
flat_x = pool4_x.view(pool4_x.size(0), -1)
#print ('flat_x size',flat_x.size())
fc1_x = F.relu(self.fc1(flat_x))
fc1_drop_x = self.fc1_drop(fc1_x)
#print ('fc1_drop_x size',fc1_drop_x.size())
fc2_x = F.relu(self.fc2(fc1_drop_x))
fc2_drop_x = self.fc2_drop(fc2_x)
#print ('fc2_drop_x size',fc2_drop_x.size())
#fc3_x = F.relu(self.fc3(fc2_drop_x))
#fc3_drop_x = self.fc3_drop(fc3_x)
#print ('fc3_drop_x size',fc3_drop_x.size())
fc3_x = self.fc3(fc2_drop_x)
#print ('fc4_x size',fc4_x.size())
return fc3_x