-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
344 lines (281 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from __future__ import division, print_function, absolute_import
import os
import pdb
import copy
import random
import argparse
import torch
import torch.nn as nn
import numpy as np
from torchvision import utils
from tqdm import tqdm
import matplotlib.pyplot as plt
from learner import Learner
from metalearner import MetaLearner
from dataloader import prepare_data
from utils import *
from PIL import Image
from torch.autograd import Variable
from torch.autograd import Function
from torchvision import models
from torchvision import utils
import cv2
import sys
import numpy as np
import argparse
# add by rzliao
FLAGS = argparse.ArgumentParser()
FLAGS.add_argument('--mode', choices=['train', 'test'])
# Hyper-parameters
FLAGS.add_argument('--n-shot', type=int,
help="How many examples per class for training (k, n_support)")
FLAGS.add_argument('--n-eval', type=int,
help="How many examples per class for evaluation (n_query)")
FLAGS.add_argument('--n-class', type=int,
help="How many classes (N, n_way)")
FLAGS.add_argument('--input-size', type=int,
help="Input size for the first LSTM")
FLAGS.add_argument('--hidden-size', type=int,
help="Hidden size for the first LSTM")
FLAGS.add_argument('--lr', type=float,
help="Learning rate")
FLAGS.add_argument('--episode', type=int,
help="Episodes to train")
FLAGS.add_argument('--episode-val', type=int,
help="Episodes to eval")
FLAGS.add_argument('--epoch', type=int,
help="Epoch to train for an episode")
FLAGS.add_argument('--batch-size', type=int,
help="Batch size when training an episode")
FLAGS.add_argument('--image-size', type=int,
help="Resize image to this size")
FLAGS.add_argument('--grad-clip', type=float,
help="Clip gradients larger than this number")
FLAGS.add_argument('--bn-momentum', type=float,
help="Momentum parameter in BatchNorm2d")
FLAGS.add_argument('--bn-eps', type=float,
help="Eps parameter in BatchNorm2d")
# Paths
FLAGS.add_argument('--data', choices=['miniimagenet'],
help="Name of dataset")
FLAGS.add_argument('--data-root', type=str,
help="Location of data")
FLAGS.add_argument('--resume', type=str,
help="Location to pth.tar")
FLAGS.add_argument('--save', type=str, default='logs',
help="Location to logs and ckpts")
# Others
FLAGS.add_argument('--cpu', action='store_true',
help="Set this to use CPU, default use CUDA")
FLAGS.add_argument('--n-workers', type=int, default=4,
help="How many processes for preprocessing")
FLAGS.add_argument('--pin-mem', type=bool, default=False,
help="DataLoader pin_memory")
FLAGS.add_argument('--log-freq', type=int, default=100,
help="Logging frequency")
FLAGS.add_argument('--val-freq', type=int, default=1000,
help="Validation frequency")
FLAGS.add_argument('--seed', type=int,
help="Random seed")
fmap_block = dict() # 装feature map
def show_cam(cam, imgs):
cam = cv2.resize(cam * 255., (84, 84)).astype('uint8') # 调整热图尺寸与图片
cam = cv2.applyColorMap(cam, cv2.COLORMAP_JET) # 将热图转化为“伪彩热图”显示模式
superimposed_img = cv2.addWeighted(cam, .3, imgs, .7, 1.) # 将特图叠加到原图片上
cv2.imwrite('cam.jpg', superimposed_img)
def show_gradcam(cam, imgs, c):
cam = cv2.resize(cam[c] * 255., (84, 84)).astype('uint8') # 调整热图尺寸与图片
cam = cv2.applyColorMap(cam, cv2.COLORMAP_JET) # 将热图转化为“伪彩热图”显示模式
cv2.imwrite('heatmap'+str(c)+'.jpg', cam)
superimposed_img = cv2.addWeighted(cam, .3, imgs, .7, 0.) # 将特图叠加到原图片上
cv2.imwrite('cam'+str(c)+'.jpg', superimposed_img)
def returnCAM(feature_conv, weight_softmax, class_idx):
# generate the class activation maps upsample to 256x256
size_upsample = (84, 84)
bz, nc, h, w = feature_conv.shape # 获取feature_conv特征的尺寸
output_cam = []
#lass_idx为预测分值较大的类别的数字表示的数组,一张图片中有N类物体则数组中N个元素
for idx in class_idx:
# weight_softmax中预测为第idx类的参数w乘以feature_map(为了相乘,故reshape了map的形状)
cam = weight_softmax[idx]*(feature_conv.reshape((nc, h*w))) # 把原来的相乘再相加转化为矩阵
# w1*c1 + w2*c2+ .. -> (w1,w2..) * (c1,c2..)^T -> (w1,w2...)*((c11,c12,c13..),(c21,c22,c23..))
# 将feature_map的形状reshape回去
cam = cam.reshape(h, w)
# 归一化操作(最小的值为0,最大的为1)
cam = cam - np.min(cam)
cam_img = cam / np.max(cam)
# 转换为图片的255的数据
cam_img = np.uint8(255 * cam_img)
# resize 图片尺寸与输入图片一致
output_cam.append(cv2.resize(cam_img, size_upsample))
return output_cam
def get_row_col(num_pic):
squr = num_pic ** 0.5
row = round(squr)
col = row + 1 if squr - row > 0 else row
return row, col
def farward_hook(module, inp, outp):
fmap_block['input'] = inp
fmap_block['output'] = outp
def imageSavePLT(images,fileName,normalization=True,mean=0,std=1):
image = utils.make_grid(images)
image = image.permute(1,2,0)
if normalization:
image = (image*torch.tensor(std)+torch.tensor(mean)).numpy()
plt.imsave(fileName,image)
return image
def hook_fn(grad):
print(grad.shape)
def meta_test(eps, eval_loader, learner_w_grad, learner_wo_grad, metalearner, args, logger):
c=0
sum_test=0
for subeps, (episode_x, episode_y) in enumerate(tqdm(eval_loader, ascii=True)):
train_input = episode_x[:, :args.n_shot].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_shot, :]
train_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_shot)).to(args.dev) # [n_class * n_shot]
test_input = episode_x[:, args.n_shot:].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_eval, :]
test_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_eval)).to(args.dev) # [n_class * n_eval]
# Train learner with metalearner
learner_w_grad.reset_batch_stats()
learner_wo_grad.reset_batch_stats()
learner_w_grad.train()
learner_wo_grad.eval()
cI = train_learner(learner_w_grad, metalearner, train_input, train_target, test_input, args)
learner_wo_grad.transfer_params(learner_w_grad, cI)
learner_wo_grad.model.features2.register_forward_hook(farward_hook)
output, x_features = learner_wo_grad(test_input, test_input)
loss = learner_wo_grad.criterion(output, test_target)
acc = accuracy(output, test_target)
sum_test+=len(test_input)
for name, param in learner_w_grad.named_parameters():
if name=='model.features2.conv4.weight':
conv=param.grad
if c<75:
params = {}
for name, param in learner_wo_grad.named_parameters():
params[name]=param
weight_softmax = np.squeeze(params['model.cls.weight'].data.cpu().numpy())
# grad_cam
img = imageSavePLT(test_input[c].cpu(),'img'+str(c)+'.png',std=[0.229, 0.224, 0.225],mean=[0.485, 0.456, 0.406])
img = cv2.imread('img'+str(c)+'.png')
grad_map = fmap_block['output']
grad = torch.mean(grad_map,(2,3),keepdim=True)
gradcam = torch.sum(grad * grad_map,dim=1)
gradcam = torch.maximum(gradcam.cpu(), torch.zeros(75,10,10).cpu())
for j in range(gradcam.shape[0]):
gradcam[j] =gradcam[j] / torch.max(gradcam[j])
show_gradcam(gradcam.detach().numpy(), img, c)
c=c+1
logger.batch_info(loss=loss.item(), acc=acc, phase='eval')
return logger.batch_info(eps=eps, totaleps=args.episode_val, phase='evaldone')
def train_learner(learner_w_grad, metalearner, train_input, train_target, test_input, args):
cI = metalearner.metalstm.cI.data
hs = [None]
for c in range(args.epoch):
for i in range(0, len(train_input), args.batch_size):
x = train_input[i:i+args.batch_size]
# print(train_input.size(),x.size())
if args.n_shot==5:
r_t = random.randint(0,10)
x_t0 = test_input[0+r_t:5+r_t]
x_t1=test_input[args.n_eval+r_t:args.n_eval+5+r_t]
x_t2=test_input[2*args.n_eval+r_t:2*args.n_eval+5+r_t]
x_t3=test_input[3*args.n_eval+r_t:3*args.n_eval+5+r_t]
x_t4=test_input[4*args.n_eval+r_t:4*args.n_eval+5+r_t]
elif args.n_shot==1:
r_t = random.randint(0,14)
x_t0 = test_input[r_t:1+r_t]
x_t1=test_input[args.n_eval+r_t:args.n_eval+r_t+1]
x_t2=test_input[2*args.n_eval+r_t:2*args.n_eval+r_t+1]
x_t3=test_input[3*args.n_eval+r_t:3*args.n_eval+r_t+1]
x_t4=test_input[4*args.n_eval+r_t:4*args.n_eval+r_t+1]
x_t=torch.cat((x_t0,x_t1,x_t2,x_t3,x_t4),0)
y = train_target[i:i+args.batch_size]
learner_w_grad.copy_flat_params(cI)
output, x_features = learner_w_grad(x, x_t)
loss = learner_w_grad.criterion(output, y)
acc = accuracy(output, y)
learner_w_grad.zero_grad()
loss.backward()
grad = torch.cat([p.grad.data.view(-1) / args.batch_size for p in learner_w_grad.parameters()], 0)
sum=0
grad_prep = preprocess_grad_loss(grad) # [n_learner_params, 2]
loss_prep = preprocess_grad_loss(loss.data.unsqueeze(0)) # [1, 2]
metalearner_input = [loss_prep, grad_prep, grad.unsqueeze(1)]
#将损失,梯度和上一个状态的元学习参数提供给元学习器
cI, h = metalearner(metalearner_input, hs[-1])
hs.append(h)
return cI
def main():
args, unparsed = FLAGS.parse_known_args()
if len(unparsed) != 0:
raise NameError("Argument {} not recognized".format(unparsed))
if args.seed is None:
args.seed = random.randint(0, 1e3)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cpu:
args.dev = torch.device('cpu')
else:
if not torch.cuda.is_available():
raise RuntimeError("GPU unavailable.")
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args.dev = torch.device('cuda')
logger = GOATLogger(args)
# Get data
train_loader, val_loader, test_loader = prepare_data(args)
# Set up learner, meta-learner
learner_w_grad = Learner(args.image_size, args.bn_eps, args.bn_momentum, args.n_class).to(args.dev)
learner_wo_grad = copy.deepcopy(learner_w_grad)
metalearner = MetaLearner(args.input_size, args.hidden_size, learner_w_grad.get_flat_params().size(0)).to("cuda")
metalearner.metalstm.init_cI(learner_w_grad.get_flat_params())
# Set up loss, optimizer, learning rate scheduler
optim = torch.optim.Adam(metalearner.parameters(), args.lr)
if args.resume:
logger.loginfo("Initialized from: {}".format(args.resume))
last_eps, metalearner, optim = resume_ckpt(metalearner, optim, args.resume, args.dev)
if args.mode == 'test':
print("测试模式")
_ = meta_test(last_eps, test_loader, learner_w_grad, learner_wo_grad, metalearner, args, logger)
return
best_acc = 0.0
logger.loginfo("Start training")
loss_list = []
acc_list = []
# Meta-training
for eps, (episode_x, episode_y) in enumerate(train_loader):
# episode_x.shape = [n_class, n_shot + n_eval, c, h, w]
# episode_y.shape = [n_class, n_shot + n_eval] --> NEVER USED
train_input = episode_x[:, :args.n_shot].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_shot, :]
train_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_shot)).to(args.dev) # [n_class * n_shot]
test_input = episode_x[:, args.n_shot:].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_eval, :]
test_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_eval)).to(args.dev) # [n_class * n_eval]
# Train learner with metalearner
learner_w_grad.reset_batch_stats()
learner_wo_grad.reset_batch_stats()
learner_w_grad.train()
learner_wo_grad.train()
cI = train_learner(learner_w_grad, metalearner, train_input, train_target, test_input, args)
# Train meta-learner with validation loss
learner_wo_grad.transfer_params(learner_w_grad, cI)
output, x_features = learner_wo_grad(test_input, test_input)
loss = learner_wo_grad.criterion(output, test_target)
acc = accuracy(output, test_target)
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(metalearner.parameters(), args.grad_clip)
optim.step()
logger.batch_info(eps=eps, totaleps=args.episode, loss=loss.item(), acc=acc, phase='train')
# Meta-validation
if eps % args.val_freq == 0 and eps != 0:
save_ckpt(eps, metalearner, optim, args.save)
loss, acc = meta_test(eps, val_loader, learner_w_grad, learner_wo_grad, metalearner, args, logger)
loss_list.append(loss)
acc_list.append(acc)
if acc > best_acc:
best_acc = acc
logger.loginfo("* Best accuracy so far *\n")
logger.loginfo("Done")
if __name__ == '__main__':
main()