-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathcamera_pose_visualizer.py
73 lines (64 loc) · 3.45 KB
/
camera_pose_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import json
import os
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import pdb
class CameraPoseVisualizer:
def __init__(self, xlim, ylim, zlim):
self.fig = plt.figure(figsize=(18, 7))
self.ax = self.fig.gca(projection='3d')
self.ax.set_aspect("auto")
self.ax.set_xlim(xlim)
self.ax.set_ylim(ylim)
self.ax.set_zlim(zlim)
self.ax.set_xlabel('x')
self.ax.set_ylabel('y')
self.ax.set_zlabel('z')
print('initialize camera pose visualizer')
def extrinsic2pyramid(self, extrinsic, color='r', focal_len_scaled=5, aspect_ratio=0.3):
focal_len_scaled = -1*focal_len_scaled
vertex_std = np.array([[0, 0, 0, 1],
[focal_len_scaled * aspect_ratio, -focal_len_scaled * aspect_ratio, focal_len_scaled, 1],
[focal_len_scaled * aspect_ratio, focal_len_scaled * aspect_ratio, focal_len_scaled, 1],
[-focal_len_scaled * aspect_ratio, focal_len_scaled * aspect_ratio, focal_len_scaled, 1],
[-focal_len_scaled * aspect_ratio, -focal_len_scaled * aspect_ratio, focal_len_scaled, 1]])
vertex_transformed = vertex_std @ extrinsic.T
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]],
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]]
self.ax.add_collection3d(
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.35))
def customize_legend(self, list_label):
list_handle = []
for idx, label in enumerate(list_label):
color = plt.cm.rainbow(idx / len(list_label))
patch = Patch(color=color, label=label)
list_handle.append(patch)
plt.legend(loc='right', bbox_to_anchor=(1.8, 0.5), handles=list_handle)
def colorbar(self, max_frame_length):
cmap = mpl.cm.rainbow
norm = mpl.colors.Normalize(vmin=0, vmax=max_frame_length)
self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), orientation='vertical', label='Frame Number')
def show(self):
plt.title('Extrinsic Parameters')
plt.show()
if __name__ == '__main__':
poses = []
with open(os.path.join('data/nerf_synthetic/chair/', 'transforms_train.json'), 'r') as fp:
meta = json.load(fp)
for frame in meta['frames']:
poses.append(np.array(frame['transform_matrix']))
t_arr = np.array([pose[:3,-1] for pose in poses])
maxes = t_arr.max(axis=0)
mins = t_arr.min(axis=0)
# argument : the minimum/maximum value of x, y, z
visualizer = CameraPoseVisualizer([mins[0]-1, maxes[0]+1], [mins[1]-1, maxes[1]+1], [mins[2]-1, maxes[2]+1])
# argument : extrinsic matrix, color, scaled focal length(z-axis length of frame body of camera
for pose in poses:
visualizer.extrinsic2pyramid(pose, 'c', 1)
visualizer.show()