-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
399 lines (347 loc) · 13.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import json
import os
import time
import warnings
from datetime import timedelta
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from timm.data import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.models import create_model
from timm.optim import create_optimizer
from timm.scheduler import create_scheduler
from timm.utils import ModelEma, NativeScaler, get_state_dict
# import models
import pvt
import pvt_v2
import utils
from datasets import build_dataset
from engine import evaluate, train_one_epoch
from logger import logger
from losses import DistillationLoss
from params import args
from pvt_v2 import Attention
from samplers import RASampler
warnings.filterwarnings("ignore")
from gpu_mem_track import MemTracker
@torch.no_grad()
def throughput(data_loader, model, logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
batch_size = images.shape[0]
for i in range(50):
model(images)
torch.cuda.synchronize()
logger.info(f"throughput averaged with 30 times")
tic1 = time.time()
for i in range(30):
model(images)
torch.cuda.synchronize()
tic2 = time.time()
logger.info(
f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}"
)
return
def main():
utils.init_distributed_mode(args)
if utils.get_rank() != 0:
logger.disabled = True
logger.info(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
dataset_val, _ = build_dataset(is_train=False, args=args)
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train,
# num_replicas=num_tasks,
num_replicas=0,
rank=global_rank,
shuffle=True,
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
logger.info(
"Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. "
"This will slightly alter validation results as extra duplicate entries are added to achieve "
"equal num of samples per-process."
)
sampler_val = torch.utils.data.DistributedSampler(
dataset_val,
# num_replicas=num_tasks,
num_replicas=0,
rank=global_rank,
shuffle=False,
)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0.0 or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup,
cutmix_alpha=args.cutmix,
cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob,
switch_prob=args.mixup_switch_prob,
mode=args.mixup_mode,
label_smoothing=args.smoothing,
num_classes=args.nb_classes,
)
logger.info(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
)
logger.info(str(model))
# if utils.get_rank() == 0:
# try:
# from ptflops import get_model_complexity_info
# macs, params = get_model_complexity_info(model, (3, args.input_size, args.input_size), as_strings=True,
# print_per_layer_stat=False, verbose=False, custom_modules_hooks={
# Attention: get_sra_flops,
# LowHighFreAttention: get_lhsa_flops
# })
# print('{:<30} {:<8}'.format('MACs: ', macs))
# print('{:<30} {:<8}'.format('Number of parameters: ', params))
# except:
# pass
if args.finetune:
if args.finetune.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location="cpu", check_hash=True
)
else:
checkpoint = torch.load(args.finetune, map_location="cpu")
if "model" in checkpoint:
checkpoint_model = checkpoint["model"]
else:
checkpoint_model = checkpoint
state_keys = list(checkpoint_model.keys())
for k, p in model.named_parameters():
if k in checkpoint_model:
state_keys.remove(k)
p.data = checkpoint_model[k].float()
else:
if args.attn_type == "msa":
# load from pretrained pvtv2
refer_k = k.split(".")
refer_k[3] = "q"
target_key = ".".join(refer_k)
q_weight = checkpoint_model[target_key].float()
state_keys.remove(target_key)
refer_k[3] = "kv"
target_key = ".".join(refer_k)
kv_weight = checkpoint_model[target_key].float()
state_keys.remove(target_key)
p.data = torch.cat((q_weight, kv_weight), dim=0)
elif args.attn_type in ["ecoformer"]:
# load from msa weight
refer_k = k.split(".")
source_k = refer_k[3]
refer_k[3] = "qkv"
target_key = ".".join(refer_k)
qkv_weight = checkpoint_model[target_key].float()
shapes = qkv_weight.shape
dim = shapes[0] // 3
if target_key in state_keys:
state_keys.remove(target_key)
if source_k == "to_qk":
p.data = qkv_weight[:dim, ...]
elif source_k == "to_v":
p.data = qkv_weight[-dim:, ...]
if len(state_keys) > 0:
for temp_key in state_keys:
logger.info("Not used: %s" % temp_key)
# state_dict = model.state_dict()
# for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
# if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
# logger.info(f"Removing key {k} from pretrained checkpoint")
# del checkpoint_model[k]
#
# model.load_state_dict(checkpoint_model, strict=False)
model.to(device)
model_ema = None
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = LabelSmoothingCrossEntropy()
if args.mixup > 0.0:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
criterion = DistillationLoss(criterion, None, "none", 0, 0)
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location="cpu", check_hash=True
)
else:
checkpoint = torch.load(args.resume, map_location="cpu")
if "model" in checkpoint:
msg = model_without_ddp.load_state_dict(checkpoint["model"])
else:
msg = model_without_ddp.load_state_dict(checkpoint)
logger.info(str(msg))
if (
not args.eval
and "optimizer" in checkpoint
and "lr_scheduler" in checkpoint
and "epoch" in checkpoint
):
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
# if args.model_ema:
# utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if "scaler" in checkpoint:
loss_scaler.load_state_dict(checkpoint["scaler"])
if "epoch" in checkpoint:
if hasattr(model, "module"):
model.module.set_retrain_resume()
else:
model.set_retrain_resume()
if args.throughput:
throughput(data_loader_val, model, logger)
return
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
logger.info(
f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
)
return
logger.info(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
gpu_tracker = MemTracker()
for epoch in range(args.start_epoch, args.epochs):
if args.fp32_resume and epoch > args.start_epoch + 1:
args.fp32_resume = False
loss_scaler._scaler = torch.cuda.amp.GradScaler(enabled=not args.fp32_resume)
# if 1 in args.use_performer:
# if hasattr(model, 'module'):
# model.module.feature_redraw_interval = 1 + 5 * epoch
# else:
# model.feature_redraw_interval = 1 + 5 * epoch
if hasattr(args, "k"):
if epoch % args.k == 0:
if hasattr(model, "module"):
model.module.set_retrain()
else:
model.set_retrain()
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model,
criterion,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
args.clip_grad,
model_ema,
mixup_fn,
set_training_mode=args.finetune
== "", # keep in eval mode during finetuning
fp32=args.fp32_resume,
)
lr_scheduler.step(epoch)
if args.output_dir:
checkpoint_paths = [output_dir / "last_checkpoint.pth"]
for checkpoint_path in checkpoint_paths:
utils.save_on_master(
{
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"scaler": loss_scaler.state_dict(),
"args": args,
},
checkpoint_path,
)
test_stats = evaluate(data_loader_val, model, device)
logger.info(
f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
)
if max_accuracy < test_stats["acc1"]:
utils.save_on_master(
{
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"scaler": loss_scaler.state_dict(),
"args": args,
},
os.path.join(args.output_dir, "best_checkpoint.pth"),
)
max_accuracy = max(max_accuracy, test_stats["acc1"])
logger.info(f"Max accuracy: {max_accuracy:.2f}%")
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
**{f"test_{k}": v for k, v in test_stats.items()},
"epoch": epoch,
"n_parameters": n_parameters,
}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(timedelta(seconds=int(total_time)))
logger.info("Training time {}".format(total_time_str))
if __name__ == "__main__":
main()