-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrap.c
285 lines (244 loc) · 9.75 KB
/
trap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#include "traps.h"
#include "spinlock.h"
#include "swap.h"
// Interrupt descriptor table (shared by all CPUs).
struct gatedesc idt[256];
extern uint vectors[]; // in vectors.S: array of 256 entry pointers
struct spinlock tickslock;
uint ticks;
// Imported from vm.c for lazy allocation
int mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm);
pte_t *walkpgdir(pde_t *pgdir, const void *va, int alloc);
// From swap.c
void swap_free(swp_entry_t);
void lru_cache_add(pte_t*, int);
void
tvinit(void)
{
int i;
for(i = 0; i < 256; i++)
SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
initlock(&tickslock, "time");
}
void
idtinit(void)
{
lidt(idt, sizeof(idt));
}
//PAGEBREAK: 41
void
trap(struct trapframe *tf)
{
if(tf->trapno == T_SYSCALL){
if(myproc()->killed)
exit();
myproc()->tf = tf;
syscall();
if(myproc()->killed)
exit();
return;
}
else if (tf->trapno == T_ILLOP && tf->err == 0)
// This happens when doing a NULL-reference in user mode
{
cprintf("Segmentation fault from instruction address 0x%p accessing address 0x%p. Terminating program [%s]!\n",tf->eip,rcr2(),myproc()->name);
myproc()->killed = 1;
exit();
}
switch(tf->trapno){
case T_IRQ0 + IRQ_TIMER:
if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);
}
lapiceoi();
break;
case T_IRQ0 + IRQ_IDE:
ideintr();
lapiceoi();
break;
case T_IRQ0 + IRQ_IDE+1:
// Bochs generates spurious IDE1 interrupts.
break;
case T_IRQ0 + IRQ_KBD:
kbdintr();
lapiceoi();
break;
case T_IRQ0 + IRQ_COM1:
uartintr();
lapiceoi();
break;
case T_IRQ0 + 7:
case T_IRQ0 + IRQ_SPURIOUS:
cprintf("cpu%d: spurious interrupt at %x:%x\n",
cpuid(), tf->cs, tf->eip);
lapiceoi();
break;
case T_PGFLT:
if (myproc() == 0)
// No page faults should happen in kernel mode
panic("trap: page fault in kernel mode");
else
{
struct proc *currproc = myproc();
char *mem;
unsigned int fault_addr = rcr2();
unsigned int fault_page = PGROUNDDOWN(fault_addr);
// Page fault occured in user space, likely from lazy allocation
//cprintf("Page fault from process [%s,%d]. Faulting addr: 0x%p. Faulting page: 0x%p\n",
// myproc()->name,myproc()->pid,fault_addr,fault_page);
currproc->page_fault_cnt++;
// Get page table entry associated with faulting address
pte_t *pte = walkpgdir(currproc->pgdir,(const void*)fault_addr,0);
//cprintf("pte=0x%p, *pte=0x%p\n",pte,*pte);
// Check for segfault (access violation)
// Occurs if:
// 1) Faulting address happens outside process boundary
// - Obviously this includes anything kernel-related, which starts at 0x80000000
// 2) PTE is non-NULL, present, and user access is not allowed (i.e. user stack guard page)
//
if (fault_addr > currproc->sz || (pte != NULL && ((*pte & PTE_P) && !(*pte & PTE_U))))
{
cprintf("Segmentation fault from instruction address 0x%p accessing address 0x%p. Terminating program [%s, pid==%d]!\n",tf->eip,fault_addr,currproc->name,currproc->pid);
if (pte != NULL)
*pte |= PTE_U;
currproc->killed = 1;
break;
}
else if (pte == NULL || !(*pte & PTE_P))
{
if (*pte & PTE_U)
{
// Possibly have an access request to a swapped-out page
swp_entry_t entry = pte_to_swp_entry(*pte);
uint offset = SWP_OFFSET(entry);
if (swap_refcount(offset) > 0)
{
// Very likely this page is swapped out. Proceed with swap in & remap
//cprintf("Access to swapped out page(0x%p) with offset %d requested\n",fault_page,offset);
// Need a page to swap this back into. This may involve a swap-out behind the scenes, but we can't worry about that here.
mem = kalloc();
if (mem != NULL)
{
// Swap the page back into our freshly allocated page
swap_in(mem,offset);
if (mappages(currproc->pgdir, (char*)fault_page, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0)
{
cprintf("Access to address 0x%p failed because it's page (0x%p) was swapped out, memory was available to swap it back in, but mappages failed.\nTerminating process [%s].\n",
fault_addr,fault_page,currproc->name);
currproc->killed = 1;
break;
}
else
{
swap_free(entry);
cprintf("kernel: Page 0x%p(new ka: 0x%p) in process [%s] swapped in from slot %d.\n",fault_page,mem,currproc->name,offset);
break;
}
}
else
{
// Unable to get a page to swap this back in, which means no physical nor swap pages are available.
// No choice but to terminate the process.
cprintf("Access to address 0x%p failed because it's page (0x%p) was swapped out, and no memory was available to swap it back in.\nTerminating process [%s].\n",
fault_addr,fault_page,currproc->name);
currproc->killed = 1;
break;
}
}
}
// Lazy allocation. May or may not be allocated using the swapper
//cprintf("pte location=0x%p, PTE flags: PTE_P=%d,PTE_U=%d,PTE_W=%d,PTE_D=%d\n",
// pte,*pte & PTE_P,*pte & PTE_U, *pte & PTE_W,*pte & PTE_D);
// Attempt to get a new page of memory. If there are no physical pages of memory, one will be made available via the swapper & returned
mem = kalloc();
//if (mem != NULL)
// cprintf("Memory allocated from lazy allocator for process [%s]. eip==0x%p, fault_addr==0x%p, fault_page==0x%p, kernel_addr==0x%p\n",
// currproc->name,tf->eip,fault_addr,fault_page,mem);
if (mem == NULL)
{
cprintf("Lazy allocation(1) failed at address 0x%p (most likely out of memory). Terminating process [%s]. Had %d pages still swapped out.\n",
fault_page,currproc->name,currproc->pages_swapped_out);
currproc->killed = 1;
}
else
{
//cprintf("mappages(0x%x,0x%x,%d,0x%x,PTE_W|PTE_U\n",currproc->pgdir,(char*)fault_addr,PGSIZE,V2P(mem));
if(mappages(currproc->pgdir, (char*)fault_page, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0) {
cprintf("Lazy allocation(2) failed at address 0x%p. Terminating process [%s].\n",
fault_page,currproc->name);
kfree(mem);
currproc->killed = 1;
}
else
{
//cprintf("Page of size %d bytes allocated for process [%s] at virtual address 0x%p for physical address 0x%p\n",
// PGSIZE,currproc->name,fault_page,V2P(mem));
// Increase count of pages "actually" allocated
currproc->phys_sz += PGSIZE;
// Add this page to the LRU cache
lru_cache_add(pte, 1);
//cprintf("Lazy allocation succeeded for address 0x%p(kalloc'ed 0x%p) for process [%s]\n", fault_page, mem, currproc->name);
//cprintf("uva2ka==0x%p\n",uva2ka(currproc->pgdir,(char*)fault_page));
/*
if (currproc->phys_sz > currproc->sz)
{
cprintf("phys_sz greater than sz. phys_sz=0x%p, sz=0x%p\n",currproc->phys_sz,currproc->sz);
cprintf("walkpgdir result for rounded down sz(0x%p): 0x%p\n",
PGROUNDDOWN(currproc->sz),walkpgdir(currproc->pgdir,(const void*)PGROUNDDOWN(currproc->sz),0));
cprintf("walkpgdir result for rounded up sz(0x%p): 0x%p\n",
PGROUNDUP(currproc->sz),walkpgdir(currproc->pgdir,(const void*)PGROUNDUP(currproc->sz),0));
cprintf("walkpgdir result for rounded up sz + 4096*5000(0x%p): 0x%p\n",
PGROUNDUP(currproc->sz) + PGSIZE*5000,walkpgdir(currproc->pgdir,(const void*)(PGROUNDUP(currproc->sz) + PGSIZE*5000),0));
cprintf("walkpgdir result for 0x0B000000: 0x%p\n",walkpgdir(currproc->pgdir,(const void*)(PGROUNDUP(184579376)),0));
}
*/
return;
}
}
}
else
{
cprintf("Unknown page fault type. pte=0x%p\nPTE flags: PTE_P=%d,PTE_U=%d\n",pte,*pte & PTE_P,*pte & PTE_U);
currproc->killed = 1;
}
}
break;
//PAGEBREAK: 13
default:
if(myproc() == 0 || (tf->cs&3) == 0){
// In kernel, it must be our mistake.
cprintf("unexpected trap %d from cpu %d eip %x (cr2=0x%x)\n",
tf->trapno, cpuid(), tf->eip, rcr2());
panic("trap");
}
// In user space, assume process misbehaved.
cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()->pid, myproc()->name, tf->trapno, tf->err, cpuid(), tf->eip,
rcr2());
myproc()->killed = 1;
}
// Force process exit if it has been killed and is in user space.
// (If it is still executing in the kernel, let it keep running
// until it gets to the regular system call return.)
if(myproc() && myproc()->killed && (tf->cs&3) == DPL_USER)
exit();
// Force process to give up CPU on clock tick.
// If interrupts were on while locks held, would need to check nlock.
if(myproc() && myproc()->state == RUNNING && tf->trapno == T_IRQ0+IRQ_TIMER)
yield();
// Check if the process has been killed since we yielded
if(myproc() && myproc()->killed && (tf->cs&3) == DPL_USER)
exit();
}