Skip to content

Scala Library for Unit-Testing Processing Topologies in Apache Kafka / Kafka Streams

License

Notifications You must be signed in to change notification settings

Empia/mockedstreams

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mocked Streams

Build Status Codacy Badge codecov License GitHub stars

Mocked Streams 1.6.0 (git) is a library for Scala 2.11 and 2.12 which allows you to unit-test processing topologies of Kafka Streams applications (since Apache Kafka >=0.10.1) without Zookeeper and Kafka Brokers. Further, you can use your favourite Scala testing framework e.g. ScalaTest and Specs2. Mocked Streams is located at the Maven Central Repository, therefore you just have to add the following to your SBT dependencies:

libraryDependencies += "com.madewithtea" %% "mockedstreams" % "1.6.0" % "test"

Apache Kafka Compatibility

Mocked Streams Version Apache Kafka Version
1.6.0 1.0.1.0
1.5.0 1.0.0.0
1.4.0 0.11.0.1
1.3.0 0.11.0.0
1.2.1 0.10.2.1
1.2.0 0.10.2.0
1.1.0 0.10.1.1
1.0.0 0.10.1.0

Simple Example

It wraps the org.apache.kafka.test.ProcessorTopologyTestDriver class, but adds more syntactic sugar to keep your test code simple:

import com.madewithtea.mockedstreams.MockedStreams

val input = Seq(("x", "v1"), ("y", "v2"))
val exp = Seq(("x", "V1"), ("y", "V2"))
val strings = Serdes.String()

MockedStreams()
  .topology { builder => builder.stream(...) [...] }
  .input("topic-in", strings, strings, input)
  .output("topic-out", strings, strings, exp.size) shouldEqual exp

Multiple Input / Output Example and State

It also allows you to have multiple input and output streams. If your topology uses state stores you need to define them using .stores(stores: Seq[String]):

import com.madewithtea.mockedstreams.MockedStreams

val mstreams = MockedStreams()
  .topology { builder => builder.stream(...) [...] }
  .input("in-a", strings, ints, inputA)
  .input("in-b", strings, ints, inputB)
  .stores(Seq("store-name"))

mstreams.output("out-a", strings, ints, expA.size) shouldEqual(expectedA)
mstreams.output("out-b", strings, ints, expB.size) shouldEqual(expectedB)

Record order and multiple emissions

The records provided to the mocked stream will be submitted to the topology during the test in the order in which they appear in the fixture. You can also submit records multiple times to the same topics, at various moments in your scenario.

This can be handy to validate that your topology behaviour is or is not dependent on the order in which the records are received and processed.

In the example below, 2 records are first submitted to topic A, then 3 to topic B, then 1 more to topic A again.

val firstInputForTopicA = Seq(("x", int(1)), ("y", int(2)))
val firstInputForTopicB = Seq(("x", int(4)), ("y", int(3)), ("y", int(5)))
val secondInputForTopicA = Seq(("y", int(4)))

val expectedOutput = Seq(("x", 5), ("y", 5), ("y", 7), ("y", 9))

val builder = MockedStreams()
  .topology(topologyTables)
  .input(InputATopic, strings, ints, firstInputForTopicA)
  .input(InputBTopic, strings, ints, firstInputForTopicB)
  .input(InputATopic, strings, ints, secondInputForTopicA)

State Store

When you define your state stores via .stores(stores: Seq[String]) since 1.2, you are able to verify the state store content via the .stateTable(name: String) method:

import com.madewithtea.mockedstreams.MockedStreams

 val mstreams = MockedStreams()
  .topology { builder => builder.stream(...) [...] }
  .input("in-a", strings, ints, inputA)
  .input("in-b", strings, ints, inputB)
  .stores(Seq("store-name"))

 mstreams.stateTable("store-name") shouldEqual Map('a' -> 1) 

Window State Store

When you define your state stores via .stores(stores: Seq[String]) since 1.2 and added the timestamp extractor to the config, you are able to verify the window state store content via the .windowStateTable(name: String, key: K) method:

import com.madewithtea.mockedstreams.MockedStreams

val props = new Properties
props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
  classOf[TimestampExtractors.CustomTimestampExtractor].getName)

val mstreams = MockedStreams()
  .topology { builder => builder.stream(...) [...] }
  .input("in-a", strings, ints, inputA)
  .stores(Seq("store-name"))
  .config(props)

mstreams.windowStateTable("store-name", "x") shouldEqual someMapX
mstreams.windowStateTable("store-name", "y") shouldEqual someMapY

Custom Streams Configuration

Sometimes you need to pass a custom configuration to Kafka Streams:

import com.madewithtea.mockedstreams.MockedStreams

  val props = new Properties
  props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG, classOf[CustomExtractor].getName)

  val mstreams = MockedStreams()
  .topology { builder => builder.stream(...) [...] }
  .config(props)
  .input("in-a", strings, ints, inputA)
  .input("in-b", strings, ints, inputB)
  .stores(Seq("store-name"))

mstreams.output("out-a", strings, ints, expA.size) shouldEqual(expectedA)
mstreams.output("out-b", strings, ints, expB.size) shouldEqual(expectedB)

About

Scala Library for Unit-Testing Processing Topologies in Apache Kafka / Kafka Streams

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Scala 100.0%