Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2025-01-30-starcoder2_3b_int8_en #14512

Open
wants to merge 6 commits into
base: models_hub
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 91 additions & 0 deletions docs/_posts/prabod/2025-01-30-starcoder2_3b_int4_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
---
layout: model
title: starcoder2_3b_int4 model from bigcode
author: John Snow Labs
name: starcoder2_3b_int4
date: 2025-01-30
tags: [en, open_source, openvino]
task: Text Generation
language: en
edition: Spark NLP 5.5.0
spark_version: 3.0
supported: true
engine: openvino
annotator: StarCoderTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/starcoder2_3b_int4_en_5.5.0_3.0_1738276280010.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/starcoder2_3b_int4_en_5.5.0_3.0_1738276280010.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
data = spark.createDataFrame([
[1, "def add(a, b):"]]).toDF("id", "text")
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

starcoder_loaded = StarCoderTransformer \
.pretrained("starcoder2_3b_int4","en") \
.setMaxOutputLength(50) \
.setDoSample(False) \
.setInputCols(["documents"]) \
.setOutputCol("generation")

pipeline = Pipeline().setStages([document_assembler, starcoder_loaded])
results = pipeline.fit(data).transform(data)

results.select("generation.result").show(truncate=False)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val seq2seq = StarCoderTransformer.pretrained("starcoder2_3b_int4","en")
.setInputCols(Array("document"))
.setOutputCol("generation")

val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq))
val data = Seq(""def add(a, b):").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|starcoder2_3b_int4|
|Compatibility:|Spark NLP 5.5.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[generation]|
|Language:|en|
|Size:|1.6 GB|

## References

https://huggingface.co/bigcode/starcoder2-3b
91 changes: 91 additions & 0 deletions docs/_posts/prabod/2025-01-30-starcoder2_3b_int8_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
---
layout: model
title: starcoder2_3b_int8 model from bigcode
author: John Snow Labs
name: starcoder2_3b_int8
date: 2025-01-30
tags: [en, open_source, openvino]
task: Text Generation
language: en
edition: Spark NLP 5.5.0
spark_version: 3.0
supported: true
engine: openvino
annotator: StarCoderTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/starcoder2_3b_int8_en_5.5.0_3.0_1738224538904.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/starcoder2_3b_int8_en_5.5.0_3.0_1738224538904.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
data = spark.createDataFrame([
[1, "def add(a, b):"]]).toDF("id", "text")
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

starcoder_loaded = StarCoderTransformer \
.pretrained("starcoder2_3b_int8","en") \
.setMaxOutputLength(50) \
.setDoSample(False) \
.setInputCols(["documents"]) \
.setOutputCol("generation")

pipeline = Pipeline().setStages([document_assembler, starcoder_loaded])
results = pipeline.fit(data).transform(data)

results.select("generation.result").show(truncate=False)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val seq2seq = StarCoderTransformer.pretrained("starcoder2_3b_int8","en")
.setInputCols(Array("document"))
.setOutputCol("generation")

val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq))
val data = Seq(""def add(a, b):").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|starcoder2_3b_int8|
|Compatibility:|Spark NLP 5.5.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[generation]|
|Language:|en|
|Size:|2.7 GB|

## References

https://huggingface.co/bigcode/starcoder2-3b
91 changes: 91 additions & 0 deletions docs/_posts/prabod/2025-02-12-olmo_1b_int4_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
---
layout: model
title: OLMo 1B
author: John Snow Labs
name: olmo_1b_int4
date: 2025-02-12
tags: [en, open_source, onnx]
task: Text Generation
language: en
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: onnx
annotator: OLMoTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

OLMo is a series of Open Language Models designed to enable the science of language models. The OLMo models are trained on the Dolma dataset. We release all code, checkpoints, logs (coming soon), and details involved in training these models. This model has been converted from allenai/OLMo-1B for the Hugging Face Transformers format.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/olmo_1b_int4_en_5.5.1_3.0_1739362135440.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/olmo_1b_int4_en_5.5.1_3.0_1739362135440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
data = spark.createDataFrame([
[1, "My name is Leo, "]]).toDF("id", "text")
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

olmor_loaded = OLMoTransformer \
.pretrained("olmo_1b_int4","en") \
.setMaxOutputLength(50) \
.setDoSample(False) \
.setInputCols(["documents"]) \
.setOutputCol("generation")

pipeline = Pipeline().setStages([document_assembler, olmor_loaded])
results = pipeline.fit(data).transform(data)

results.select("generation.result").show(truncate=False)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val seq2seq = OLMoTransformer.pretrained("olmo_1b_int4","en")
.setInputCols(Array("document"))
.setOutputCol("generation")

val pipeline = new Pipeline().setStages(Array(documentAssembler, seq2seq))
val data = Seq(""My name is Leo,").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|olmo_1b_int4|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[generation]|
|Language:|en|
|Size:|1.1 GB|

## References

https://huggingface.co/allenai/OLMo-1B-hf
118 changes: 118 additions & 0 deletions docs/_posts/prabod/2025-02-13-llava_1_5_7b_hf_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
---
layout: model
title: llava-1.5-7b-hf
author: John Snow Labs
name: llava_1_5_7b_hf
date: 2025-02-13
tags: [en, open_source, openvino]
task: Image Captioning
language: en
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: openvino
annotator: LLAVAForMultiModal
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/llava_1_5_7b_hf_en_5.5.1_3.0_1739432390529.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/llava_1_5_7b_hf_en_5.5.1_3.0_1739432390529.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from pyspark.sql.functions import lit

image_df = spark.read.format("image").load(path=images_path) # Replace with your image path
test_df = image_df.withColumn("text", lit("USER: \n <|image|> \n What's this picture about? \n ASSISTANT:\n"))

imageAssembler = ImageAssembler()
.setInputCol("image")
.setOutputCol("image_assembler")

visualQAClassifier = LLAVAForMultiModal.pretrained()
.setInputCols("image_assembler")
.setOutputCol("answer")

pipeline = Pipeline().setStages([
imageAssembler,
visualQAClassifier
])

result = pipeline.fit(test_df).transform(test_df)
result.select("image_assembler.origin", "answer.result").show(False)
```
```scala
import spark.implicits._
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotator._
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions.lit

val imageFolder = "path/to/your/images" // Replace with your image path

val imageDF: DataFrame = spark.read
.format("image")
.option("dropInvalid", value = true)
.load(imageFolder)

val testDF: DataFrame = imageDF.withColumn("text", lit("USER: \n <|image|> \nWhat is unusual on this picture? \n ASSISTANT:\n"))

val imageAssembler: ImageAssembler = new ImageAssembler()
.setInputCol("image")
.setOutputCol("image_assembler")

val visualQAClassifier = LLAVAForMultiModal.pretrained()
.setInputCols("image_assembler")
.setOutputCol("answer")

val pipeline = new Pipeline().setStages(Array(
imageAssembler,
visualQAClassifier
))

val result = pipeline.fit(testDF).transform(testDF)

result.select("image_assembler.origin", "answer.result").show(false)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|llava_1_5_7b_hf|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[image_assembler]|
|Output Labels:|[answer]|
|Language:|en|
|Size:|3.9 GB|

## References

https://huggingface.co/llava-hf/llava-1.5-7b-hf
Loading