Skip to content

Commit

Permalink
DOC: Add examples to linprog_simplex
Browse files Browse the repository at this point in the history
  • Loading branch information
oyamad committed Jan 1, 2025
1 parent a05c70e commit b0ee7da
Showing 1 changed file with 124 additions and 6 deletions.
130 changes: 124 additions & 6 deletions quantecon/optimize/linprog_simplex.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,124 @@
"""
Contain a Numba-jitted linear programming solver based on the Simplex
Method.
r"""
Contain `linprog_simplex`, a Numba-jitted linear programming solver
based on the Simplex Method.
The formulation of linear program `linprog_simplex` assumes is:
maximize::
c @ x
subject to::
A_ub @ x <= b_ub
A_eq @ x == b_eq
x >= 0
Examples
--------
1. A problem inequality constraints:
.. math::
\max_{x_0, x_1, x_2, x_3}\ \ & 2x_0 + 4x_1 + x_2 + x_3 \\
\mbox{such that}\ \ & 2x_0 + x_1 \leq 3, \\
& x_1 + 4x_2 + x_3 \leq 3, \\
& x_0 + 3x_1 + x_3 \leq 4, \\
& x_0, x_1, x_2, x_3 \geq 0.
Solve this problem with `linprog_simplex`:
>>> c = np.array([2, 4, 1, 1])
>>> A_ub = np.array([[2, 1, 0, 0], [0, 1, 4, 1], [1, 3, 0, 1]])
>>> b_ub = np.array([3, 3, 4])
>>> res = linprog_simplex(c, A_ub=A_ub, b_ub=b_ub)
The solution found:
>>> res.x
array([1. , 1. , 0.5, 0. ])
The optimal value:
>>> res.fun
6.5
The dual solution:
>>> res.lambd
array([0.45, 0.25, 1.1 ])
2. A problem equality constraints:
.. math::
\max_{x_0, x_1, x_2, x_3}\ \ & 2x_0 - 3x_1 + x_2 + x_3 \\
\mbox{such that}\ \ & x_0 + 2x_1 + x_2 + x_3 = 3, \\
& x_0 - 2x_1 + 2x_2 + x_3 = -2, \\
& 3x_0 - x_1 - x_3 = -1, \\
& x_0, x_1, x_2, x_3 \geq 0.
Solve this problem with `linprog_simplex`:
>>> c = np.array([2, -3, 1, 1])
>>> A_eq = np.array([[1, 2, 1, 1], [1, -2, 2, 1], [3, -1, 0, -1]])
>>> b_eq = np.array([3, -2, -1])
>>> res = linprog_simplex(c, A_eq=A_eq, b_eq=b_eq)
The solution found:
>>> res.x
array([0.1875, 1.25 , 0. , 0.3125])
The optimal value:
>>> res.fun
-3.0625
The dual solution:
>>> res.lambd
array([-0.0625, 1.3125, 0.25 ])
3. Consider the following minimization problem (an example from the
documentation for `scipy.optimize.linprog`):
.. math::
\min_{x_0, x_1}\ \ & -x_0 + 4x_1 \\
\mbox{such that}\ \ & -3x_0 + x_1 \leq 6, \\
& -x_0 - 2x_1 \geq -4, \\
& x_1 \geq -3.
The problem is not represented in the form accepted by
`linprog_simplex`. Transforming the variables by :math:`x_0 = z_0 -
z_1` and :math:`x_1 + 3 = z_2`, and multiply the objective function
by :math:`-1`, we thus solve the following equivalent maximization
problem:
.. math::
\max_{z_0, z_1, z_2}\ \ & z_0 + z_1 - 4z_2 \\
\mbox{such that}\ \ & -3z_0 -3z_1 + z_2 \leq 9, \\
& z_0 + z_1 + 2z_2 \leq -2, \\
& z_0, z_1, z_2 \geq 0.
Solve the latter problem with `linprog_simplex`:
>>> c = np.array([1, 1, -4])
>>> A = np.array([[-3, -3, 1], [1, 1, 2]])
>>> b = np.array([9, 10])
>>> res = linprog_simplex(c, A_ub=A, b_ub=b)
The optimal value of the original problem:
>>> -(res.fun + 12) # -(z_0 + z_1 - 4 (z_2 - 3))
-22.0
And the solution found:
>>> res.x[0] - res.x[1], res.x[2] - 3 # (z_0 - z_1, z_2 - 3)
(10.0, -3.0)
"""
from collections import namedtuple
Expand Down Expand Up @@ -127,7 +245,7 @@ def linprog_simplex(c, A_ub=np.empty((0, 0)), b_ub=np.empty((0,)),
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem apperas to be unbounded
3 : Problem appears to be unbounded
num_iter : int
The number of iterations performed.
Expand Down Expand Up @@ -466,10 +584,10 @@ def solve_phase_1(tableau, basis, max_iter=10**6, piv_options=PivOptions()):
status = 2
return success, status, num_iter_1

# Check artifial variables have been eliminated
# Check artificial variables have been eliminated
tol_piv = piv_options.tol_piv
for i in range(L):
if basis[i] >= nm: # Artifial variable not eliminated
if basis[i] >= nm: # Artificial variable not eliminated
for j in range(nm):
if tableau[i, j] < -tol_piv or \
tableau[i, j] > tol_piv: # Treated nonzero
Expand Down

0 comments on commit b0ee7da

Please sign in to comment.