-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpose_comparator.py
61 lines (32 loc) · 1.52 KB
/
pose_comparator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from pose_visualizer import PoseVisualizer
from image_aligner import ImageAligner
def distance(k1, k2):
return np.linalg.norm(np.array(k1[:2])-np.array(k2[:2]))
def compute_distance(poses_1, poses_2):
assert len(poses_1) == len(poses_2), "List of both poses must be the same length"
poses_2 = ImageAligner.align_poses(poses_1, poses_2)
distances = []
for p in range(len(poses_1)):
keypoints_1, keypoints_2 = poses_1[p], poses_2[p]
dist = []
for k1, k2 in zip(keypoints_1, keypoints_2):
dist.append(distance(k1, k2))
distances.append(dist)
return distances
def find_and_compute_distance(poses_1, poses_2):
assert len(poses_2) >= len(poses_1), "Second poses list must have equal or larger size than referent (first) poses list"
all_distances = []
for i in range(len(poses_2) - len(poses_1)):
new_poses_2 = poses_2[i:i+len(poses_1)]
all_distances.append(np.array(compute_distance(poses_1, new_poses_2)).flatten().sum())
min_idx = 0 if len(all_distances) == 0 else np.where(all_distances == min(all_distances))[0][0]
min_poses_2 = poses_2[min_idx:min_idx+len(poses_1)]
return poses_1, min_poses_2, compute_distance(poses_1, min_poses_2)
def demo():
poses_1, poses_2 = [], [] # Todo load from dataset
compute_distance(poses_1, poses_2)
poses_2 = poses_1
# poses_2 = poses_2[:10] + poses_2 + poses_2[30:]
find_and_compute_distance(poses_1, poses_2)
PoseVisualizer.do_plot3D(poses_1)