-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpose_visualizer.py
190 lines (128 loc) · 5.51 KB
/
pose_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from detectron2.data.datasets.builtin_meta import COCO_PERSON_KEYPOINT_NAMES
import matplotlib.pyplot as plt
import numpy as np
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import Visualizer
from image_aligner import ImageAligner
import time
import matplotlib as mpl
from detectron2.data.datasets.builtin_meta import COCO_PERSON_KEYPOINT_NAMES
import cv2
class PoseVisualizer:
def __init__(self, pose_tracker):
#self.keypoint_names = metadata.keypoint_names
self.pose_tracker = pose_tracker
def poses_for_id(self, id):
tracked_poses = self.pose_tracker.tracked_poses
out = []
for k in range(min(tracked_poses.keys()), 1+max(tracked_poses.keys())):
for pose in tracked_poses[k]:
if pose["id"] == id:
out.append(pose["keypoints"].numpy())
return np.array(out)
@staticmethod
def break_pose_into_parts(tracked_pose):
pose_by_parts = dict()
for pose in tracked_pose:
for i, part in enumerate(pose):
if pose_by_parts.get(i) is None:
pose_by_parts[i] = list()
pose_by_parts[i].append(part)
return pose_by_parts
def plot3D(self, id, show_all_parts=False):
tracked_pose = self.poses_for_id(id)
self.do_plot3D(tracked_pose=tracked_pose,
title="Pose for tracker {0}".format(id),
show_all_parts=show_all_parts,
keypoint_names=self.pose_tracker.visualizer.metadata.keypoint_names)
"""
tracked_pose = self.poses_for_id(id)
pose_by_parts = self.break_pose_into_parts(tracked_pose)
parts_list = ('nose', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle')
if show_all_parts:
parts_list = self.pose_tracker.visualizer.metadata.keypoint_names
ax = plt.axes(projection="3d")
legend = []
for k in pose_by_parts.keys():
part_name = self.pose_tracker.visualizer.metadata.keypoint_names[k]
if part_name not in parts_list:
continue
sc = np.array(pose_by_parts.get(k))
xs = sc[:, 0]
zs = sc[:, 1]
ys = np.arange(0, len(sc))
ax.plot3D(xs, ys, zs, alpha=1)
legend.append(part_name)
ax.set_xlabel('x')
ax.set_ylabel('t')
ax.set_zlabel('y')
plt.legend(legend)
ax.view_init(elev=30, azim=15)
plt.title("Pose for tracker {0}".format(id))
plt.show()
#plt.savefig("./res/3D.png")
"""
@staticmethod
def do_plot3D(tracked_pose, title="Pose", show_all_parts=False, keypoint_names=COCO_PERSON_KEYPOINT_NAMES):
pose_by_parts = PoseVisualizer.break_pose_into_parts(tracked_pose)
parts_list = ('nose', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle')
if show_all_parts:
parts_list = keypoint_names
ax = plt.axes(projection="3d")
legend = []
for k in pose_by_parts.keys():
part_name = keypoint_names[k]
if part_name not in parts_list:
continue
sc = np.array(pose_by_parts.get(k))
xs = sc[:, 0]
zs = sc[:, 1]
ys = np.arange(0, len(sc))
ax.plot3D(xs, ys, zs, alpha=1)
legend.append(part_name)
ax.set_xlabel('x')
ax.set_ylabel('t')
ax.set_zlabel('y')
plt.legend(legend)
ax.view_init(elev=30, azim=15)
plt.title(title)
plt.show()
#plt.savefig("./res/3D.png")
@staticmethod
def draw_pose(p, title, p_ref=None):
metadata = MetadataCatalog.get("keypoints_coco_2017_val")
image = np.zeros((800, 300, 1))
vis = Visualizer(image, metadata)
vis.draw_and_connect_keypoints(p)
if p_ref is not None:
interest_points = ('left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle')
for i in range(len(p)):
if COCO_PERSON_KEYPOINT_NAMES[i] not in interest_points:
continue
k, r = p[i], p_ref[i]
#vis.draw_line([k[0], r[0]], [k[1], r[1]], color="red")
vis.output.ax.add_line(
mpl.lines.Line2D(
[k[0], r[0]],
[k[1], r[1]],
linewidth=1 * vis.output.scale,
color=(0.0, 0.0, 1.0),
linestyle="-",
marker="."
)
)
visimg = vis.output.get_image()
cv2.imshow(title, visimg)
cv2.waitKey(1)
return visimg
@staticmethod
def show_sequence(poses_1, poses_2, delay=2):
for i in range(len(poses_1)):
PoseVisualizer.draw_pose(poses_1[i], "Pose in sequence 1")
#draw_pose(poses_2[i], "Pose in sequence 2")
p_al = ImageAligner.align_pose(poses_1[i], poses_2[i])
PoseVisualizer.draw_pose(p_al, "Pose in sequence 2 aligned", poses_1[i])
cv2.moveWindow("Pose in sequence 2 aligned", 300, 0)
time.sleep(delay)
cv2.destroyAllWindows()
cv2.waitKey(1)