This concise guide outlines the essential steps to solve the GR (General Relativity) exercises.
Thank for all the contibutors in the telegram group (year 2024/2025):
- Jean-Pierre
- Belli Luigi
- Fulterz
- Margherita
- Sergio Lucci
- NikoG
- Sergio
- Llewyn Merrill
- Franceschino
-
Identify the Original Metric
- Start with the metric tensor
$g_{\mu\nu}$ in the initial coordinates. - In Cartesian coordinates
$(x, y)$ :$g_{\mu\nu} = \left[ 1 \quad 0 \atop 0 \quad 1 \right]$
- Start with the metric tensor
-
Define the Transformation
- Express the new coordinates in terms of the original ones.
$u = \frac{x + y}{2}, \quad v = \frac{x - y}{2}.$
-
Compute Partial Derivatives
- Calculate
$\frac{\partial x^\mu}{\partial x^{\mu'}}$ for all relevant indices:$\frac{\partial x}{\partial u} = 1, \quad \frac{\partial x}{\partial v} = 1, \quad \frac{\partial y}{\partial u} = 1, \quad \frac{\partial y}{\partial v} = -1.$
- Calculate
-
Apply the Transformation Rule
- Use the tensor transformation rule:
$g_{\mu'\nu'} = \frac{\partial x^\mu}{\partial x^{\mu'}} , \frac{\partial x^\nu}{\partial x^{\nu'}} , g_{\mu\nu}.$
- Use the tensor transformation rule:
-
Simplify the Results
- Determine the new metric tensor components:
$g_{\mu'\nu'} = \left[ 2 \quad 0 \atop 0 \quad 2 \right]$
- Determine the new metric tensor components:
-
Count the Independent Symbols
- In 2D, there are
$2 \times 3 = 6$ independent Christoffel symbols considering symmetry.
- In 2D, there are
-
Identify Non-Vanishing Symbols
- Condition 1: Indices in partial derivatives must align with non-zero components of the metric.
- Condition 2: Only one partial derivative of the metric is non-zero at a time.
-
Apply the Connection Formula
- Compute using:
$\Gamma^\mu_{\nu\lambda} = \frac{1}{2} , g^{\mu\rho} \bigl( \partial_\nu g_{\lambda\rho} + \partial_\lambda g_{\nu\rho} - \partial_\rho g_{\nu\lambda} \bigr).$
- Compute using:
-
List the Non-Zero Symbols
-
In polar coordinates:
$\Gamma^r_{\phi\phi} = -r, \quad \Gamma^\phi_{r\phi} = \Gamma^\phi_{\phi r} = \frac{1}{r}.$
-
-
Identify the Metric
$ds^2 = -(1+x)^2 dt^2 + dx^2$ $g_{\mu\nu} = \left[ -(1+x)^2 \ \quad 0\ \atop 0 \quad \ \ \ \ \ 1 \right]$
-
Compute Non-Vanishing Derivatives
$\partial_x g_{tt} = -2(1+x)$
-
Calculate Christoffel Symbols
$\Gamma^t_{tx} = \Gamma^t_{xt} = \frac{1}{2} g^{tt} \partial_x g_{tt} = \frac{1}{1+x}$ $\Gamma^x_{tt} = \frac{1}{2} g^{xx} \partial_x g_{tt} = 1+x$
-
Identify the Metric
$ds^2 = (1+x^2)dx^2 + (1+y^2)dy^2$ $g_{\mu\nu} = \left[ 1+x^2 \quad 0 \atop 0 \quad 1+y^2 \right]$
-
Compute Non-Vanishing Derivatives
$\partial_x g_{xx} = 2x$ $\partial_y g_{yy} = 2y$
-
Calculate Christoffel Symbols
$\Gamma^x_{xx} = \frac{1}{2} g^{xx} \partial_x g_{xx} = \frac{x}{1+x^2}$ $\Gamma^x_{yy} = 0$
-
Metric Approximation:
$ds^2 = -\left(1+2\Phi\right)dt^2 + \left(1-2\Phi\right)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2$ $\Phi = -\frac{GM_E}{r}$
-
Scenario:
- Two clocks: one at
$r = R_E$ and another at$r = R_E + h$ .
- Two clocks: one at
-
Proper Time Calculation:
$d\tau = \sqrt{1 + 2\Phi(r)} dt$ - Clock 1:
$\tau_1 = \sqrt{1 - \frac{2GM_E}{R_E}} \times t$ - Clock 2:
$\tau_2 = \sqrt{1 - \frac{2GM_E}{R_E + h}} \times t$
-
Proper Time Ratio:
$\frac{\tau_2}{\tau_1} = \frac{\sqrt{1 - \frac{2GM_E}{R_E + h}}}{\sqrt{1 - \frac{2GM_E}{R_E}}}$
-
Approximation for
$h \ll R_E$ :- Using binomial expansion:
$\frac{\tau_2}{\tau_1} \approx \frac {\left(\frac{R_E}{GM_E} - 1 + \frac{h}{R_E}\right)} {\left(\frac{R_E}{GM_E} - 1\right)} $ - Where
$\frac{GM_E}{R_E} \approx 6.957 \times 10^{-10}$ (calculated using SI units and$c=1$ ).
-
Identify the Metric
$ds^2 = d\theta^2 + \sin^2\theta , d\phi^2$
-
Identify Non-Vanishing Christoffel Symbols
$\Gamma^\theta_{\phi\phi} = -\sin\theta \cos\theta$ $\Gamma^\phi_{\theta\phi} = \Gamma^\phi_{\phi\theta} = \cot\theta$
-
Write Down the Geodesic Equations
$\frac{d^2 \theta}{d\lambda^2} - \sin\theta \cos\theta \left(\frac{d\phi}{d\lambda}\right)^2 = 0$ $\frac{d^2 \phi}{d\lambda^2} + 2 \cot\theta \frac{d\theta}{d\lambda} \frac{d\phi}{d\lambda} = 0$
-
Lines of Constant Longitude (
$\phi = \text{const.}$ )- Substitute
$\frac{d\phi}{d\lambda} = 0$ and$\frac{d^2\phi}{d\lambda^2} = 0$ into the geodesic equations. - The equations are satisfied, confirming that lines of constant longitude are geodesics.
- Substitute
-
Lines of Constant Latitude (
$\theta = \text{const.}$ )- Substitute
$\frac{d\theta}{d\lambda} = 0$ and$\frac{d^2\theta}{d\lambda^2} = 0$ into the geodesic equations. - The first equation reduces to
$\sin\theta \cos\theta \left(\frac{d\phi}{d\lambda}\right)^2 = 0$ . - This is satisfied if
$\theta = \frac{\pi}{2}$ (equator) or if$\frac{d\phi}{d\lambda} = 0$ (meridian). - The second equation is satisfied, indicating that
$\phi$ changes linearly with$\lambda$ . - Therefore, the only line of constant latitude that is a geodesic is the equator.
- Substitute
-
Identify the Metric and Coordinates
$ds^2 = d\theta^2 + \sin^2\theta , d\phi^2$ $x^\mu = (\theta, \phi)$
-
Recall Non-Vanishing Christoffel Symbols
$\Gamma^\theta_{\phi\phi} = -\sin\theta \cos\theta$ $\Gamma^\phi_{\theta\phi} = \Gamma^\phi_{\phi\theta} = \cot\theta$
-
Compute Covariant Derivative of a Contravariant Vector
$\nabla_\mu V^\nu = \partial_\mu V^\nu + \Gamma^\nu_{\mu\lambda} V^\lambda$ $\nabla_\theta V^\theta = \partial_\theta V^\theta$ $\nabla_\theta V^\phi = \partial_\theta V^\phi + \cot\theta V^\phi$ $\nabla_\phi V^\theta = \partial_\phi V^\theta - \sin\theta \cos\theta V^\phi$ $\nabla_\phi V^\phi = \partial_\phi V^\phi + \cot\theta V^\theta$
-
Compute Covariant Derivative of a Covariant Vector
$\nabla_\mu V_\nu = \partial_\mu V_\nu - \Gamma^\lambda_{\mu\nu} V_\lambda$ $\nabla_\theta V_\theta = \partial_\theta V_\theta$ $\nabla_\theta V_\phi = \partial_\theta V_\phi - \cot\theta V_\phi$ $\nabla_\phi V_\theta = \partial_\phi V_\theta - \cot\theta V_\phi$ $\nabla_\phi V_\phi = \partial_\phi V_\phi + \sin\theta \cos\theta V_\theta$
-
Show
$\nabla_\mu (V^\nu V_\nu) = \partial_\mu (V^\nu V_\nu)$ - Use the product rule:
$\nabla_\mu (V^\nu V_\nu) = V^\nu \nabla_\mu V_\nu + V_\nu \nabla_\mu V^\nu$ - Substitute the expressions for
$\nabla_\mu V^\nu$ and$\nabla_\mu V_\nu$ . - Show that the terms involving Christoffel symbols cancel out after renaming dummy indices.
- The result follows:
$\nabla_\mu (V^\nu V_\nu) = \partial_\mu (V^\nu V_\nu)$ .
- Use the product rule:
-
General Commutator Formula
For a
$(2,0)$ tensor$W^{\mu\nu}$ ,$[\nabla_\alpha, \nabla_\beta]\ W^{\mu\nu} \ =\ R^\mu_{\ \ \sigma\alpha\beta},W^{\sigma\nu} \ +\ R^\nu_{\ \ \sigma\alpha\beta},W^{\mu\sigma}.$ -
Contraction and Conditions
After contracting suitable indices (so that we look at
$[\nabla_{\mu}, \nabla_{\nu}],W^{\mu\nu}$ ), one obtains$[\nabla_{\mu}, \nabla_{\nu}],W^{\mu\nu} \ =\ R_{\sigma\nu},\bigl(W^{\sigma\nu} \ -\ W^{\nu\sigma}\bigr).$ This expression vanishes under either of these conditions:-
$W^{\mu\nu}$ is symmetric, i.e.\$W^{\mu\nu} = W^{\nu\mu}$ . - The spacetime is Ricci-flat,
$R_{\mu\nu} = 0$ .
-
-
Different approach
Note: also a different approach is possible, if we assume zero torsion, then the commutator of covariant derivatives is always zero. (see box)
-
Metric and Null Condition
- The 2D metric is:
$ds^2 = -\Bigl(1 + \frac{x^2}{\ell^2}\Bigr),dt^2 \ +\ dx^2.$ - A photon satisfies
$ds^2 = 0$ (null geodesic).
- The 2D metric is:
-
Conserved Quantity
- The metric does not depend on
$t$ , so$p_t = g_{t\alpha} , p^\alpha$ is conserved. - Define
$p_t = -,E$ , leading to$\Bigl(1 + \frac{x^2}{\ell^2}\Bigr),\frac{dt}{d\lambda} = E.$
- The metric does not depend on
-
Solve for (\frac{dx}{d\lambda})
- From the null condition:
$0 = -\Bigl(1 + \frac{x^2}{\ell^2}\Bigr),\Bigl(\frac{dt}{d\lambda}\Bigr)^2 \ +\ \Bigl(\frac{dx}{d\lambda}\Bigr)^2.$ - Substitute
$\tfrac{dt}{d\lambda} = \tfrac{E}{1 + x^2/\ell^2}$ to get$\Bigl(\frac{dx}{d\lambda}\Bigr)^2 = \frac{E^2}{,1 + \frac{x^2}{\ell^2},}.$ - Therefore,
$\frac{dx}{d\lambda} = \pm\ \frac{E}{\sqrt{,1 + \frac{x^2}{\ell^2},}}.$
- From the null condition:
-
Schwarzschild Metric
$ds^2 = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2.$
-
Compute (\Gamma^r_{rr})
- Recall
$\Gamma^r_{rr} = \frac{1}{2}g^{rr}\partial_r g_{rr}, \quad g_{rr} = \left(1 - \frac{2GM}{r}\right)^{-1}, \quad g^{rr} = \left(1 - \frac{2GM}{r}\right).$ - One finds
$\Gamma^r_{rr} = -\frac{GM}{r^2}\left(1 - \frac{2GM}{r}\right)^{-1}.$
-
Compute (\Gamma^\phi_{r\phi})
- Recall
$\Gamma^\phi_{r\phi} = \frac{1}{2}g^{\phi\phi}\partial_r g_{\phi\phi},\quad g_{\phi\phi} = r^2\sin^2\theta, \quad g^{\phi\phi} = \frac{1}{r^2\sin^2\theta}.$ - Hence
$\Gamma^\phi_{r\phi} = \frac{1}{r}.$
-
Schwarzschild Metric and Conserved Quantities
- The Schwarzschild metric is:
$ds^2 = - \left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2.$ - Conserved quantities for geodesic motion are:
$E = \left(1 - \frac{2GM}{r}\right) \frac{dt}{d\tau}$ (energy per unit mass)$L = r^2 \frac{d\phi}{d\tau}$ (angular momentum per unit mass)
- The Schwarzschild metric is:
-
Normalization Condition and Effective Potential
- For a massive particle, the four-velocity normalization is:
$g_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} = -1$ - Restricting motion to the equatorial plane (
$\theta = \frac{\pi}{2}$ ), the normalization condition becomes:$-\left(1 - \frac{2GM}{r}\right)\left(\frac{dt}{d\tau}\right)^2 + \left(1 - \frac{2GM}{r}\right)^{-1} \left(\frac{dr}{d\tau}\right)^2 + r^2 \left(\frac{d\phi}{d\tau}\right)^2 = -1$ - Substituting
$E$ and$L$ and rearranging, we get:$\frac{1}{2}\left(\frac{dr}{d\tau}\right)^2 + V_{\mathrm{eff}}(r) = \frac{E^2}{2}$ - The effective potential
$V_{\mathrm{eff}}(r)$ is:$V_{\mathrm{eff}}(r) = -\frac{GM}{r} + \frac{L^2}{2r^2} - \frac{GML^2}{r^3} + \frac{1}{2} = \left(1-\frac{2GM}{r}\right)\left(\frac{L^2}{2r^2}+\frac{1}{2}\right)$
- For a massive particle, the four-velocity normalization is:
-
Circular Orbits
- For circular orbits,
$\frac{dr}{d\tau} = 0$ , implying an extremum of the effective potential:$\frac{dV_{\mathrm{eff}}}{dr} = 0$ - This condition leads to the equation:
$\frac{GM}{r^2} - \frac{L^2}{r^3} + \frac{3 G M L^2}{r^4} = 0$ - Multiplying by
$r^4$ gives a quadratic equation in$r$ :$GMr^2 - L^2r + 3GML^2 = 0$
- For circular orbits,
-
Smallest Stable Radius (ISCO)
- The quadratic equation has solutions:
$r = \frac{L^2 \pm \sqrt{L^4 - 12 G^2 M^2 L^2}}{2 G M}$ - Real solutions exist only if
$L^2 \ge 12 G^2 M^2$ . - At the threshold
$L^2 = 12 G^2 M^2$ , the two solutions coincide, giving the innermost stable circular orbit ( ISCO):$r_{\text{ISCO}} = 6GM$
- The quadratic equation has solutions:
-
Effective Potential
- The effective potential
$V_{\mathrm{eff}}(r)$ is:$V_{\mathrm{eff}}(r) = -\frac{GM}{r} + \frac{L^2}{2r^2} - \frac{GML^2}{r^3} + \frac{1}{2} = \left(1-\frac{2GM}{r}\right)\left(\frac{L^2}{2r^2}+\frac{1}{2}\right)$
- The effective potential
-
Circular Orbits
- For circular orbits,
$\frac{dr}{d\tau} = 0$ , implying an extremum of the effective potential:$\frac{dV_{\mathrm{eff}}}{dr} = 0$ - This condition leads to the equation:
$\frac{GM}{r^2} - \frac{L^2}{r^3} + \frac{3 G M L^2}{r^4} = 0$ - Multiplying by
$r^4$ gives a quadratic equation in$r$ :$GMr^2 - L^2r + 3GML^2 = 0$
- For circular orbits,
-
Smallest Stable Radius (ISCO)
- The quadratic equation has solutions:
$r = \frac{L^2 \pm \sqrt{L^4 - 12 G^2 M^2 L^2}}{2 G M}$ - Real solutions exist only if
$L^2 \ge 12 G^2 M^2$ . - At the threshold
$L^2 = 12 G^2 M^2$ , the two solutions coincide, giving the innermost stable circular orbit ( ISCO):$r_{\text{ISCO}} = 6GM$
- The quadratic equation has solutions:
-
Stable Orbit in the (L \to \infty) Limit
- For large (L), the stable orbit radius is approximately:
$r \approx \frac{L^2}{GM}$ - This matches the Newtonian result in the same limit.
- For large (L), the stable orbit radius is approximately:
-
Schwarzschild Metric and Conserved Quantities
- The Schwarzschild metric is:
$ds^2 = - \left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2.$ - Conserved quantities for geodesic motion are:
$E = \left(1 - \frac{2GM}{r}\right) \frac{dt}{d\lambda}$ (energy)$L = r^2 \frac{d\phi}{d\lambda}$ (angular momentum)
- The Schwarzschild metric is:
-
Normalization Condition and Effective Potential
- For a massless particle, the four-momentum normalization is:
$g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} = 0$ - Restricting motion to the equatorial plane (
$\theta = \frac{\pi}{2}$ ), the normalization condition becomes:$-\left(1 - \frac{2GM}{r}\right)\left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2GM}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2 = 0$ - Substituting
$E$ and$L$ and rearranging, we get:$\frac{1}{2}\left(\frac{dr}{d\lambda}\right)^2 + V_{\mathrm{eff}}(r) = \frac{E^2}{2}$ - The effective potential
$V_{\mathrm{eff}}(r)$ is:$V_{\mathrm{eff}}(r) = \frac{L^2}{2r^2}\left(1-\frac{2GM}{r}\right)$
- For a massless particle, the four-momentum normalization is:
-
Circular Orbits
- For circular orbits,
$\frac{dr}{d\lambda} = 0$ , implying an extremum of the effective potential:$\frac{dV_{\mathrm{eff}}}{dr} = 0$ - Setting
$GM=1$ and$L=10$ , this condition leads to the equation:$-\frac{100}{r^3} + \frac{300}{r^4} = 0$ , that is solved for$r = 3GM$ .
- For circular orbits,
- Thus, the radius of the circular orbit for a massless particle is:
$r = 3GM$
-
Stability of the Circular Orbit
- To check stability, we compute the second derivative of the effective potential:
$\frac{d^2 V_{\text{eff}}}{dr^2} = \frac{3L^2}{r^4} - \frac{12GML^2}{r^5}$ - Evaluating at
$r = 3GM$ , we get:$\frac{d^2 V_{\text{eff}}}{dr^2}\Big|_{r=3GM} = -\frac{L^2}{81(GM)^4} < 0$ - Since the second derivative is negative, the circular orbit at
$r = 3GM$ is unstable.
- To check stability, we compute the second derivative of the effective potential:
-
Schwarzschild Metric and Conserved Quantities
- The Schwarzschild metric is:
$ds^2 = - \left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2.$ - Conserved quantities for geodesic motion are:
$E = \left(1 - \frac{2GM}{r}\right) \frac{dt}{d\lambda}$ (energy)$L = r^2 \frac{d\phi}{d\lambda}$ (angular momentum)
- The Schwarzschild metric is:
-
Normalization Condition and Effective Potential
- For a massless particle (photon), the four-momentum normalization is:
$g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} = 0$ - Restricting motion to the equatorial plane (
$\theta = \frac{\pi}{2}$ ), the normalization condition becomes:$-\left(1 - \frac{2GM}{r}\right)\left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2GM}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2 = 0$ - Substituting
$E$ and$L$ and rearranging, we get:$\frac{1}{2}\left(\frac{dr}{d\lambda}\right)^2 + V_{\mathrm{eff}}(r) = \frac{E^2}{2}$ - The effective potential
$V_{\mathrm{eff}}(r)$ is:$V_{\mathrm{eff}}(r) = \frac{L^2}{2r^2}\left(1-\frac{2GM}{r}\right)$
- For a massless particle (photon), the four-momentum normalization is:
-
Conditions for Reaching the Singularity
- Setting
$GM=1$ and$L=10$ , the effective potential becomes:$V_{\mathrm{eff}}(r) = \frac{50}{r^2} - \frac{100}{r^3}$ - To reach the singularity at
$r=0$ , the photon's energy must be greater than or equal to the maximum value of the effective potential. - The maximum of
$V_{\mathrm{eff}}$ occurs at$r_{\text{max}} = 3GM = 3$ (in units where$GM=1$ ). - The value of the effective potential at this maximum is:
$V_{\mathrm{eff}}(3) = \frac{50}{27}$
- Setting
-
Minimum Energy
- The photon can reach the singularity if
$\frac{E^2}{2} \ge V_{\mathrm{eff}}(3)$ . - Therefore, the minimum energy required is:
$E_{\min} = \sqrt{2 V_{\mathrm{eff}}(3)} = \frac{10}{3\sqrt{3}}$
- The photon can reach the singularity if
-
Definition of
$V_\mu$ - Define the vector
$V_\mu$ as:$V_\mu = \partial_\nu h^\nu_\mu - \frac{1}{2} \partial_\mu h^\nu_\nu$
-
$h^\nu_\mu = \eta^{\nu\alpha}h_{\mu\alpha}$ and$h^\nu_\nu = \eta^{\nu\alpha}h_{\nu\alpha}$ is the trace of$h_{\mu\nu}$ .
- Define the vector
-
Infinitesimal Gauge Transformation
- Consider a small coordinate transformation:
$x^\mu \to x^\mu + \xi^\mu$
- The metric perturbation
$h_{\mu\nu}$ transforms as:$h_{\mu\nu} \to h_{\mu\nu} + \partial_\mu \xi_\nu + \partial_\nu \xi_\mu$
$\xi_\mu = \eta_{\mu\alpha} \xi^\alpha$
- Consider a small coordinate transformation:
-
Transformation of
$V_\mu$ - Under the gauge transformation,
$V_\mu$ transforms as:$V_\mu \to V_\mu + \Box \xi_\mu$
-
$\Box = \partial^\alpha \partial_\alpha$ is the d'Alembert operator.
- Under the gauge transformation,
-
Existence of Lorenz Gauge
- It is always possible to find a gauge where
$V_\mu = 0$ (Lorenz gauge). - This is achieved by choosing
$\xi_\mu$ such that:$\Box \xi_\mu = -V_\mu$
- The existence of a solution to this inhomogeneous wave equation guarantees that the Lorenz gauge can always be reached.
- It is always possible to find a gauge where
-
Plane Wave in TT Gauge
- Consider a plane wave propagating in the positive z-direction:
$h_{\mu\nu}^{TT} = Re(C_{\mu\nu} e^{ik_\sigma x^\sigma})$
-
$k^\mu = (\omega, 0, 0, \omega)$ for a wave propagating along the positive z-axis.
- Consider a plane wave propagating in the positive z-direction:
-
Polarization Tensor
$C_{\mu\nu}$ for '+' Polarization-
$C_{\mu\nu}$ is symmetric:$C_{\mu\nu} = C_{\nu\mu}$ . - Transversality:
$k^\mu C_{\mu\nu} = 0 \implies C_{0\nu} = -C_{3\nu}$ - Tracelessness:
$C^\mu_\mu = 0 \implies C_{00} = C_{33}, C_{11} = -C_{22}$ . - For '+' polarization in standard TT gauge:
$C_{11} = -C_{22} = C_+$ and$C_{12} = C_{21} = 0$ ,$C_{0\nu} = C_{3\nu} = 0$ . - Explicitly:
$C_{00} = 0$ $C_{01} = 0$ $C_{02} = 0$ $C_{03} = 0$ $C_{10} = 0$ $C_{11} = C_+$ $C_{12} = 0$ $C_{13} = 0$ $C_{20} = 0$ $C_{21} = 0$ $C_{22} = -C_+$ $C_{23} = 0$ $C_{30} = 0$ $C_{31} = 0$ $C_{32} = 0$ $C_{33} = 0$
-
-
Gauge Transformation
- Consider a gauge transformation:
$\xi^\mu = (\alpha(x^\mu), \beta(x^\mu), 0, 0)$
- The metric perturbation transforms as:
$h_{\mu\nu} \to h_{\mu\nu} + \partial_\mu \xi_\nu + \partial_\nu \xi_\mu$
- Compute
$\partial_\mu \xi_\nu + \partial_\nu \xi_\mu$ , where$\xi_\nu = (-\alpha, \beta, 0, 0)$ , by explicitly calculating all the partial derivatives. - The transformed metric perturbation is:
$h'_{00} = -2\partial_0 \alpha$ $h'_{01} = \partial_0 \beta - \partial_1 \alpha$ $h'_{02} = -\partial_2 \alpha$ $h'_{03} = -\partial_3 \alpha$ $h'_{10} = \partial_0 \beta - \partial_1 \alpha$ $h'_{11} = C^{+} \cos(\omega(t-z)) + 2\partial_1 \beta$ $h'_{12} = \partial_2 \beta$ $h'_{13} = \partial_3 \beta$ $h'_{20} = -\partial_2 \alpha$ $h'_{21} = \partial_2 \beta$ $h'_{22} = -C^{+} \cos(\omega(t-z))$ $h'_{23} = 0$ $h'_{30} = -\partial_3 \alpha$ $h'_{31} = \partial_3 \beta$ $h'_{32} = 0$ $h'_{33} = 0$
- Consider a gauge transformation:
-
Relation between
$\omega$ and$k$ - We start with a wave vector
$k^\mu = (\omega,,0,,k,,k)$ . - Since gravitational waves propagate at the speed of light in vacuum, we must have
$k_\mu,k^\mu = 0$ . - Using the Minkowski metric
$\eta_{\mu\nu} = \mathrm{diag}(-1,,+1,,+1,,+1)$ , we find $$ k_\mu = (-\omega,,0,,k,,k). $$ - The null condition
$-\omega^2 + k^2 + k^2 = 0$ implies$\omega^2 = 2,k^2$ , hence$\omega = \sqrt{2},k$ .
- We start with a wave vector
-
Polarization Tensor in the Rotated Frame
- To describe the wave propagating along
$(0,,k,,k)$ , define new coordinates$(t',,x',,y',,z')$ by:-
$x' = x$ , -
$z' = \tfrac{1}{\sqrt{2}},(y + z)$ (the propagation axis), -
$y' = \tfrac{1}{\sqrt{2}},(y - z)$ (so that${x',,y',,z'}$ is a right-handed system).
-
- In the primed frame (TT gauge) for a wave propagating along
$z'$ , the non-zero components of the amplitude tensor for the plus and cross polarizations are:- $C^{'}{x'x'} = h'{+}$,
- $C^{'}{y'y'} = -,h'{+}$,
- $C^{'}{x'y'} = C^{'}{y'x'} = h'_{\times}$,
- all other
$C^{'}_{\mu'\nu'} = 0$ .
- To describe the wave propagating along
-
Coordinate Transformation and Final
$C_{\mu\nu}$ - The old coordinates
$(t,,x,,y,,z)$ are related to the new ones via the transformation matrix$\Lambda^{\mu'}_{;\mu} = \tfrac{\partial x^{\mu'}}{\partial x^{\mu}}$ . - After applying this transformation back to the original system, the non-zero components of
$C_{\mu\nu}$ become:-
$C_{xx} = h'_{+}$ , -
$C_{xy} = \tfrac{1}{\sqrt{2}},h'_{\times}$ , -
$C_{xz} = -,\tfrac{1}{\sqrt{2}},h'_{\times}$ , -
$C_{yy} = -,\tfrac{1}{2},h'_{+}$ , -
$C_{yz} = \tfrac{1}{2},h'_{+}$ , -
$C_{zz} = -,\tfrac{1}{2},h'_{+}$ , -
$C_{t\mu} = 0$ for all$\mu$ .
-
- These results ensure:
-
Transversality:
$k^\mu,C_{\mu\nu} = 0$ , which means$C_{t\mu} = 0$ here. -
Tracelessness:
$C_{xx} + C_{yy} + C_{zz} = 0$ in the spatial part. -
Clear separation of polarizations: the off-diagonal parts
$(xy,;xz)$ depend only on $h'{\times}$, and the diagonal parts $(xx;yy;zz)$ depend only on $h^{'}+$.
-
Transversality:
- The old coordinates
By examining this procedure, one sees explicitly how the
-
Friedmann:
$H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^2}$ -
Fluid (continuity):
$\dot{\rho} + 3H(\rho + p) = 0$
Use
The
Substitute
Hence, the acceleration equation is:
-
Energy Density as a Function of Scale Factor
- Given the equation of state
$p = \frac{2}{3}\rho$ , we use the fluid equation:$\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + p) = 0$ $\frac{d\rho}{\rho} = -5 \frac{da}{a}$
- Integrating, we obtain:
-
$\rho(a) = \rho_0 a^{-5}$ (since$a_0 = 1$ )
-
- Given the equation of state
-
Scale Factor as a Function of Time
- Substituting
$\rho(a)$ into the Friedmann equation for a flat universe ($\kappa = 0$ ):$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \rho_0 a^{-5}$ $\dot{a} = \sqrt{\frac{8\pi G \rho_0}{3}} a^{-3/2}$
- Integrating, we find:
$a(t) = \left(\frac{25}{4}\frac{8\pi G \rho_0}{3}\right)^{1/5} t^{2/5} = \left(\frac{50\pi G \rho_0}{3}\right)^{1/5} t^{2/5}$
- Using the condition
$a(t_0) = 1$ , we get:-
$a(t) = \left(\frac{t}{t_0}\right)^{2/5}$ with$t_0 = \left(\frac{3}{50\pi G \rho_0}\right)^{1/2}$
-
- Substituting
-
Hubble Parameter as a Function of Time
- Using
$H(t) = \frac{\dot{a}(t)}{a(t)}$ and the expression for$a(t)$ :$H(t) = \frac{2}{5t}$
- Using
-
Energy Density as a Function of Time
- Substituting
$a(t)$ into$\rho(a) = \rho_0 a^{-5}$ :$\rho(t) = \rho_0 \left(\frac{3}{50\pi G \rho_0}\right) t^{-2} = \frac{3}{50\pi G t^2}$
- Substituting
-
Derivation of (\Omega_M(a))
- Given a spatially flat universe (
$\kappa=0$ ) with non-relativistic matter and a cosmological constant$\Lambda$ . - Friedmann equation:
$H^2 = \frac{8\pi G}{3}(\rho_M + \rho_\Lambda) = \frac{8\pi G}{3}\rho_M + \frac{\Lambda}{3}$ -
$\rho_M(a) = \rho_0 a^{-3}$ (since$a_0 = 1$ ) $\rho_\Lambda = \frac{\Lambda}{8\pi G}$ - Critical density:
$\rho_{\text{cr}}(t) = \frac{3H^2(t)}{8\pi G}$ - Current critical density:
$\rho_{\text{cr},0} = \frac{3H_0^2}{8\pi G}$ - Current matter density parameter:
$\Omega_0 = \frac{\rho_0}{\rho_{\text{cr},0}} = 0.3$ - At present time:
$H_0^2 = \frac{8\pi G}{3}\rho_0 + \frac{\Lambda}{3}$ - Dividing the Friedmann equation by
$H^2$ :$1 = \frac{\rho_M}{\rho_{\text{cr}}} + \frac{\Lambda}{3H^2}$ - Density parameter for matter:
$\Omega_M(a) = \frac{\rho_M(a)}{\rho_{\text{cr}}(a)} = \frac{8\pi G \rho_0}{3H^2(a)a^3} = \Omega_0 \frac{H_0^2}{H^2(a)a^3}$ - Expressing
$\frac{\Lambda}{3}$ in terms of$H_0$ and$\Omega_0$ :$\frac{\Lambda}{3} = H_0^2(1-\Omega_0)$ - Substituting into
$H^2(a)$ :$H^2(a) = H_0^2(\Omega_0 a^{-3} + 1 - \Omega_0)$ - Finally:
$\Omega_M(a) = \frac{\Omega_0 a^{-3}}{\Omega_0 a^{-3} + 1 - \Omega_0}$
- Given a spatially flat universe (
-
Scale Factor at the Onset of Acceleration
- Acceleration equation:
$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_M - 2\rho_\Lambda)$ - Acceleration begins when
$\ddot{a} > 0$ , i.e.,$\rho_M < 2\rho_\Lambda$ - Using
$\rho_M(a) = \rho_0 a^{-3}$ and$\rho_\Lambda = \frac{\rho_0}{\Omega_0}(1-\Omega_0)$ :$\rho_0 a^{-3} < 2 \frac{\rho_0}{\Omega_0}(1-\Omega_0)$ $a^3 > \frac{\Omega_0}{2(1-\Omega_0)}$
- Scale factor at the onset of acceleration:
$a_\Lambda = \left(\frac{\Omega_0}{2(1-\Omega_0)}\right)^{1/3}$ - With
$\Omega_0 = 0.3$ :$a_\Lambda = \left(\frac{0.3}{2(1-0.3)}\right)^{1/3} \approx 0.6$
- Acceleration equation: