Skip to content

Syrinx98/hack_gr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Exercise Solution Guide

This concise guide outlines the essential steps to solve the GR (General Relativity) exercises.

Thank for all the contibutors in the telegram group (year 2024/2025):

  • Jean-Pierre
  • Belli Luigi
  • Fulterz
  • Margherita
  • Sergio Lucci
  • NikoG
  • Sergio
  • Llewyn Merrill
  • Franceschino

1. Metric Tensor Transformation

  1. Identify the Original Metric

    • Start with the metric tensor $g_{\mu\nu}$ in the initial coordinates.
    • In Cartesian coordinates $(x, y)$:
      • $g_{\mu\nu} = \left[ 1 \quad 0 \atop 0 \quad 1 \right]$
  2. Define the Transformation

    • Express the new coordinates in terms of the original ones.
    • $u = \frac{x + y}{2}, \quad v = \frac{x - y}{2}.$
  3. Compute Partial Derivatives

    • Calculate $\frac{\partial x^\mu}{\partial x^{\mu'}}$ for all relevant indices:
      • $\frac{\partial x}{\partial u} = 1, \quad \frac{\partial x}{\partial v} = 1, \quad \frac{\partial y}{\partial u} = 1, \quad \frac{\partial y}{\partial v} = -1.$
  4. Apply the Transformation Rule

    • Use the tensor transformation rule:
      • $g_{\mu'\nu'} = \frac{\partial x^\mu}{\partial x^{\mu'}} , \frac{\partial x^\nu}{\partial x^{\nu'}} , g_{\mu\nu}.$
  5. Simplify the Results

    • Determine the new metric tensor components:
      • $g_{\mu'\nu'} = \left[ 2 \quad 0 \atop 0 \quad 2 \right]$

2. Computing Christoffel Symbols

  1. Count the Independent Symbols

    • In 2D, there are $2 \times 3 = 6$ independent Christoffel symbols considering symmetry.
  2. Identify Non-Vanishing Symbols

    • Condition 1: Indices in partial derivatives must align with non-zero components of the metric.
    • Condition 2: Only one partial derivative of the metric is non-zero at a time.
  3. Apply the Connection Formula

    • Compute using: $\Gamma^\mu_{\nu\lambda} = \frac{1}{2} , g^{\mu\rho} \bigl( \partial_\nu g_{\lambda\rho} + \partial_\lambda g_{\nu\rho} - \partial_\rho g_{\nu\lambda} \bigr).$
  4. List the Non-Zero Symbols

    • In polar coordinates:

      $\Gamma^r_{\phi\phi} = -r, \quad \Gamma^\phi_{r\phi} = \Gamma^\phi_{\phi r} = \frac{1}{r}.$


3. Christoffel Symbols in a 2D Spacetime

  1. Identify the Metric

    • $ds^2 = -(1+x)^2 dt^2 + dx^2$
    • $g_{\mu\nu} = \left[ -(1+x)^2 \ \quad 0\ \atop 0 \quad \ \ \ \ \ 1 \right]$
  2. Compute Non-Vanishing Derivatives

    • $\partial_x g_{tt} = -2(1+x)$
  3. Calculate Christoffel Symbols

    • $\Gamma^t_{tx} = \Gamma^t_{xt} = \frac{1}{2} g^{tt} \partial_x g_{tt} = \frac{1}{1+x}$
    • $\Gamma^x_{tt} = \frac{1}{2} g^{xx} \partial_x g_{tt} = 1+x$

4. Christoffel Symbols with Coordinate-Dependent Metric

  1. Identify the Metric

    • $ds^2 = (1+x^2)dx^2 + (1+y^2)dy^2$
    • $g_{\mu\nu} = \left[ 1+x^2 \quad 0 \atop 0 \quad 1+y^2 \right]$
  2. Compute Non-Vanishing Derivatives

    • $\partial_x g_{xx} = 2x$
    • $\partial_y g_{yy} = 2y$
  3. Calculate Christoffel Symbols

    • $\Gamma^x_{xx} = \frac{1}{2} g^{xx} \partial_x g_{xx} = \frac{x}{1+x^2}$
    • $\Gamma^x_{yy} = 0$

5. Gravitational Time Dilation

  1. Metric Approximation:

    • $ds^2 = -\left(1+2\Phi\right)dt^2 + \left(1-2\Phi\right)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2$
    • $\Phi = -\frac{GM_E}{r}$
  2. Scenario:

    • Two clocks: one at $r = R_E$ and another at $r = R_E + h$.
  3. Proper Time Calculation:

    • $d\tau = \sqrt{1 + 2\Phi(r)} dt$
    • Clock 1: $\tau_1 = \sqrt{1 - \frac{2GM_E}{R_E}} \times t$
    • Clock 2: $\tau_2 = \sqrt{1 - \frac{2GM_E}{R_E + h}} \times t$
  4. Proper Time Ratio:

    • $\frac{\tau_2}{\tau_1} = \frac{\sqrt{1 - \frac{2GM_E}{R_E + h}}}{\sqrt{1 - \frac{2GM_E}{R_E}}}$
  5. Approximation for $h \ll R_E$:

    • Using binomial expansion:
    • $\frac{\tau_2}{\tau_1} \approx \frac {\left(\frac{R_E}{GM_E} - 1 + \frac{h}{R_E}\right)} {\left(\frac{R_E}{GM_E} - 1\right)} $
    • Where $\frac{GM_E}{R_E} \approx 6.957 \times 10^{-10}$ (calculated using SI units and $c=1$).

6. Geodesics on a Sphere

  1. Identify the Metric

    • $ds^2 = d\theta^2 + \sin^2\theta , d\phi^2$
  2. Identify Non-Vanishing Christoffel Symbols

    • $\Gamma^\theta_{\phi\phi} = -\sin\theta \cos\theta$
    • $\Gamma^\phi_{\theta\phi} = \Gamma^\phi_{\phi\theta} = \cot\theta$
  3. Write Down the Geodesic Equations

    • $\frac{d^2 \theta}{d\lambda^2} - \sin\theta \cos\theta \left(\frac{d\phi}{d\lambda}\right)^2 = 0$
    • $\frac{d^2 \phi}{d\lambda^2} + 2 \cot\theta \frac{d\theta}{d\lambda} \frac{d\phi}{d\lambda} = 0$
  4. Lines of Constant Longitude ($\phi = \text{const.}$)

    • Substitute $\frac{d\phi}{d\lambda} = 0$ and $\frac{d^2\phi}{d\lambda^2} = 0$ into the geodesic equations.
    • The equations are satisfied, confirming that lines of constant longitude are geodesics.
  5. Lines of Constant Latitude ($\theta = \text{const.}$)

    • Substitute $\frac{d\theta}{d\lambda} = 0$ and $\frac{d^2\theta}{d\lambda^2} = 0$ into the geodesic equations.
    • The first equation reduces to $\sin\theta \cos\theta \left(\frac{d\phi}{d\lambda}\right)^2 = 0$.
    • This is satisfied if $\theta = \frac{\pi}{2}$ (equator) or if $\frac{d\phi}{d\lambda} = 0$ (meridian).
    • The second equation is satisfied, indicating that $\phi$ changes linearly with $\lambda$.
    • Therefore, the only line of constant latitude that is a geodesic is the equator.

7. Covariant Derivatives on a Sphere

  1. Identify the Metric and Coordinates

    • $ds^2 = d\theta^2 + \sin^2\theta , d\phi^2$
    • $x^\mu = (\theta, \phi)$
  2. Recall Non-Vanishing Christoffel Symbols

    • $\Gamma^\theta_{\phi\phi} = -\sin\theta \cos\theta$
    • $\Gamma^\phi_{\theta\phi} = \Gamma^\phi_{\phi\theta} = \cot\theta$
  3. Compute Covariant Derivative of a Contravariant Vector

    • $\nabla_\mu V^\nu = \partial_\mu V^\nu + \Gamma^\nu_{\mu\lambda} V^\lambda$
    • $\nabla_\theta V^\theta = \partial_\theta V^\theta$
    • $\nabla_\theta V^\phi = \partial_\theta V^\phi + \cot\theta V^\phi$
    • $\nabla_\phi V^\theta = \partial_\phi V^\theta - \sin\theta \cos\theta V^\phi$
    • $\nabla_\phi V^\phi = \partial_\phi V^\phi + \cot\theta V^\theta$
  4. Compute Covariant Derivative of a Covariant Vector

    • $\nabla_\mu V_\nu = \partial_\mu V_\nu - \Gamma^\lambda_{\mu\nu} V_\lambda$
    • $\nabla_\theta V_\theta = \partial_\theta V_\theta$
    • $\nabla_\theta V_\phi = \partial_\theta V_\phi - \cot\theta V_\phi$
    • $\nabla_\phi V_\theta = \partial_\phi V_\theta - \cot\theta V_\phi$
    • $\nabla_\phi V_\phi = \partial_\phi V_\phi + \sin\theta \cos\theta V_\theta$
  5. Show $\nabla_\mu (V^\nu V_\nu) = \partial_\mu (V^\nu V_\nu)$

    • Use the product rule: $\nabla_\mu (V^\nu V_\nu) = V^\nu \nabla_\mu V_\nu + V_\nu \nabla_\mu V^\nu$
    • Substitute the expressions for $\nabla_\mu V^\nu$ and $\nabla_\mu V_\nu$.
    • Show that the terms involving Christoffel symbols cancel out after renaming dummy indices.
    • The result follows: $\nabla_\mu (V^\nu V_\nu) = \partial_\mu (V^\nu V_\nu)$.

8. Commutator of Covariant Derivatives on a (2,0) Tensor

  1. General Commutator Formula

    For a $(2,0)$ tensor $W^{\mu\nu}$, $[\nabla_\alpha, \nabla_\beta]\ W^{\mu\nu} \ =\ R^\mu_{\ \ \sigma\alpha\beta},W^{\sigma\nu} \ +\ R^\nu_{\ \ \sigma\alpha\beta},W^{\mu\sigma}.$

  2. Contraction and Conditions

    After contracting suitable indices (so that we look at $[\nabla_{\mu}, \nabla_{\nu}],W^{\mu\nu}$), one obtains $[\nabla_{\mu}, \nabla_{\nu}],W^{\mu\nu} \ =\ R_{\sigma\nu},\bigl(W^{\sigma\nu} \ -\ W^{\nu\sigma}\bigr).$ This expression vanishes under either of these conditions:

    • $W^{\mu\nu}$ is symmetric, i.e.\ $W^{\mu\nu} = W^{\nu\mu}$.
    • The spacetime is Ricci-flat, $R_{\mu\nu} = 0$.
  3. Different approach

    Note: also a different approach is possible, if we assume zero torsion, then the commutator of covariant derivatives is always zero. (see box)


9. Photon Geodesics in 2D Spacetime

  1. Metric and Null Condition

    • The 2D metric is: $ds^2 = -\Bigl(1 + \frac{x^2}{\ell^2}\Bigr),dt^2 \ +\ dx^2.$
    • A photon satisfies $ds^2 = 0$ (null geodesic).
  2. Conserved Quantity

    • The metric does not depend on $t$, so $p_t = g_{t\alpha} , p^\alpha$ is conserved.
    • Define $p_t = -,E$, leading to $\Bigl(1 + \frac{x^2}{\ell^2}\Bigr),\frac{dt}{d\lambda} = E.$
  3. Solve for (\frac{dx}{d\lambda})

    • From the null condition: $0 = -\Bigl(1 + \frac{x^2}{\ell^2}\Bigr),\Bigl(\frac{dt}{d\lambda}\Bigr)^2 \ +\ \Bigl(\frac{dx}{d\lambda}\Bigr)^2.$
    • Substitute $\tfrac{dt}{d\lambda} = \tfrac{E}{1 + x^2/\ell^2}$ to get $\Bigl(\frac{dx}{d\lambda}\Bigr)^2 = \frac{E^2}{,1 + \frac{x^2}{\ell^2},}.$
    • Therefore, $\frac{dx}{d\lambda} = \pm\ \frac{E}{\sqrt{,1 + \frac{x^2}{\ell^2},}}.$

10. Christoffel Symbols in Schwarzschild Coordinates

  1. Schwarzschild Metric

    • $ds^2 = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2.$
  2. Compute (\Gamma^r_{rr})

    • Recall
    • $\Gamma^r_{rr} = \frac{1}{2}g^{rr}\partial_r g_{rr}, \quad g_{rr} = \left(1 - \frac{2GM}{r}\right)^{-1}, \quad g^{rr} = \left(1 - \frac{2GM}{r}\right).$
    • One finds
    • $\Gamma^r_{rr} = -\frac{GM}{r^2}\left(1 - \frac{2GM}{r}\right)^{-1}.$
  3. Compute (\Gamma^\phi_{r\phi})

    • Recall
    • $\Gamma^\phi_{r\phi} = \frac{1}{2}g^{\phi\phi}\partial_r g_{\phi\phi},\quad g_{\phi\phi} = r^2\sin^2\theta, \quad g^{\phi\phi} = \frac{1}{r^2\sin^2\theta}.$
    • Hence
    • $\Gamma^\phi_{r\phi} = \frac{1}{r}.$

11. Stable Circular Orbits in Schwarzschild Geometry

  1. Schwarzschild Metric and Conserved Quantities

    • The Schwarzschild metric is: $ds^2 = - \left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2.$
    • Conserved quantities for geodesic motion are: $E = \left(1 - \frac{2GM}{r}\right) \frac{dt}{d\tau}$ (energy per unit mass) $L = r^2 \frac{d\phi}{d\tau}$ (angular momentum per unit mass)
  2. Normalization Condition and Effective Potential

    • For a massive particle, the four-velocity normalization is: $g_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} = -1$
    • Restricting motion to the equatorial plane ($\theta = \frac{\pi}{2}$), the normalization condition becomes: $-\left(1 - \frac{2GM}{r}\right)\left(\frac{dt}{d\tau}\right)^2 + \left(1 - \frac{2GM}{r}\right)^{-1} \left(\frac{dr}{d\tau}\right)^2 + r^2 \left(\frac{d\phi}{d\tau}\right)^2 = -1$
    • Substituting $E$ and $L$ and rearranging, we get: $\frac{1}{2}\left(\frac{dr}{d\tau}\right)^2 + V_{\mathrm{eff}}(r) = \frac{E^2}{2}$
    • The effective potential $V_{\mathrm{eff}}(r)$ is: $V_{\mathrm{eff}}(r) = -\frac{GM}{r} + \frac{L^2}{2r^2} - \frac{GML^2}{r^3} + \frac{1}{2} = \left(1-\frac{2GM}{r}\right)\left(\frac{L^2}{2r^2}+\frac{1}{2}\right)$
  3. Circular Orbits

    • For circular orbits, $\frac{dr}{d\tau} = 0$, implying an extremum of the effective potential: $\frac{dV_{\mathrm{eff}}}{dr} = 0$
    • This condition leads to the equation: $\frac{GM}{r^2} - \frac{L^2}{r^3} + \frac{3 G M L^2}{r^4} = 0$
    • Multiplying by $r^4$ gives a quadratic equation in $r$: $GMr^2 - L^2r + 3GML^2 = 0$
  4. Smallest Stable Radius (ISCO)

    • The quadratic equation has solutions: $r = \frac{L^2 \pm \sqrt{L^4 - 12 G^2 M^2 L^2}}{2 G M}$
    • Real solutions exist only if $L^2 \ge 12 G^2 M^2$.
    • At the threshold $L^2 = 12 G^2 M^2$, the two solutions coincide, giving the innermost stable circular orbit ( ISCO): $r_{\text{ISCO}} = 6GM$

12. Stable Circular Orbits in Schwarzschild Geometry (Continued)

  1. Effective Potential

    • The effective potential $V_{\mathrm{eff}}(r)$ is: $V_{\mathrm{eff}}(r) = -\frac{GM}{r} + \frac{L^2}{2r^2} - \frac{GML^2}{r^3} + \frac{1}{2} = \left(1-\frac{2GM}{r}\right)\left(\frac{L^2}{2r^2}+\frac{1}{2}\right)$
  2. Circular Orbits

    • For circular orbits, $\frac{dr}{d\tau} = 0$, implying an extremum of the effective potential: $\frac{dV_{\mathrm{eff}}}{dr} = 0$
    • This condition leads to the equation: $\frac{GM}{r^2} - \frac{L^2}{r^3} + \frac{3 G M L^2}{r^4} = 0$
    • Multiplying by $r^4$ gives a quadratic equation in $r$: $GMr^2 - L^2r + 3GML^2 = 0$
  3. Smallest Stable Radius (ISCO)

    • The quadratic equation has solutions: $r = \frac{L^2 \pm \sqrt{L^4 - 12 G^2 M^2 L^2}}{2 G M}$
    • Real solutions exist only if $L^2 \ge 12 G^2 M^2$.
    • At the threshold $L^2 = 12 G^2 M^2$, the two solutions coincide, giving the innermost stable circular orbit ( ISCO): $r_{\text{ISCO}} = 6GM$
  4. Stable Orbit in the (L \to \infty) Limit

    • For large (L), the stable orbit radius is approximately: $r \approx \frac{L^2}{GM}$
    • This matches the Newtonian result in the same limit.

13. Circular Orbits for Massless Objects in Schwarzschild Geometry

  1. Schwarzschild Metric and Conserved Quantities

    • The Schwarzschild metric is: $ds^2 = - \left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2.$
    • Conserved quantities for geodesic motion are: $E = \left(1 - \frac{2GM}{r}\right) \frac{dt}{d\lambda}$ (energy) $L = r^2 \frac{d\phi}{d\lambda}$ (angular momentum)
  2. Normalization Condition and Effective Potential

    • For a massless particle, the four-momentum normalization is: $g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} = 0$
    • Restricting motion to the equatorial plane ($\theta = \frac{\pi}{2}$), the normalization condition becomes: $-\left(1 - \frac{2GM}{r}\right)\left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2GM}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2 = 0$
    • Substituting $E$ and $L$ and rearranging, we get: $\frac{1}{2}\left(\frac{dr}{d\lambda}\right)^2 + V_{\mathrm{eff}}(r) = \frac{E^2}{2}$
    • The effective potential $V_{\mathrm{eff}}(r)$ is: $V_{\mathrm{eff}}(r) = \frac{L^2}{2r^2}\left(1-\frac{2GM}{r}\right)$
  3. Circular Orbits

    • For circular orbits, $\frac{dr}{d\lambda} = 0$, implying an extremum of the effective potential: $\frac{dV_{\mathrm{eff}}}{dr} = 0$
    • Setting $GM=1$ and $L=10$, this condition leads to the equation: $-\frac{100}{r^3} + \frac{300}{r^4} = 0$, that is solved for $r = 3GM$.
  • Thus, the radius of the circular orbit for a massless particle is: $r = 3GM$
  1. Stability of the Circular Orbit
    • To check stability, we compute the second derivative of the effective potential: $\frac{d^2 V_{\text{eff}}}{dr^2} = \frac{3L^2}{r^4} - \frac{12GML^2}{r^5}$
    • Evaluating at $r = 3GM$, we get: $\frac{d^2 V_{\text{eff}}}{dr^2}\Big|_{r=3GM} = -\frac{L^2}{81(GM)^4} < 0$
    • Since the second derivative is negative, the circular orbit at $r = 3GM$ is unstable.

14. Minimum Energy for Photon to Reach Singularity in Schwarzschild Geometry

  1. Schwarzschild Metric and Conserved Quantities

    • The Schwarzschild metric is: $ds^2 = - \left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2.$
    • Conserved quantities for geodesic motion are: $E = \left(1 - \frac{2GM}{r}\right) \frac{dt}{d\lambda}$ (energy) $L = r^2 \frac{d\phi}{d\lambda}$ (angular momentum)
  2. Normalization Condition and Effective Potential

    • For a massless particle (photon), the four-momentum normalization is: $g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} = 0$
    • Restricting motion to the equatorial plane ($\theta = \frac{\pi}{2}$), the normalization condition becomes: $-\left(1 - \frac{2GM}{r}\right)\left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2GM}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2 = 0$
    • Substituting $E$ and $L$ and rearranging, we get: $\frac{1}{2}\left(\frac{dr}{d\lambda}\right)^2 + V_{\mathrm{eff}}(r) = \frac{E^2}{2}$
    • The effective potential $V_{\mathrm{eff}}(r)$ is: $V_{\mathrm{eff}}(r) = \frac{L^2}{2r^2}\left(1-\frac{2GM}{r}\right)$
  3. Conditions for Reaching the Singularity

    • Setting $GM=1$ and $L=10$, the effective potential becomes: $V_{\mathrm{eff}}(r) = \frac{50}{r^2} - \frac{100}{r^3}$
    • To reach the singularity at $r=0$, the photon's energy must be greater than or equal to the maximum value of the effective potential.
    • The maximum of $V_{\mathrm{eff}}$ occurs at $r_{\text{max}} = 3GM = 3$ (in units where $GM=1$).
    • The value of the effective potential at this maximum is: $V_{\mathrm{eff}}(3) = \frac{50}{27}$
  4. Minimum Energy

    • The photon can reach the singularity if $\frac{E^2}{2} \ge V_{\mathrm{eff}}(3)$.
    • Therefore, the minimum energy required is: $E_{\min} = \sqrt{2 V_{\mathrm{eff}}(3)} = \frac{10}{3\sqrt{3}}$

15. Gauge Transformations in Linearized Gravity

  1. Definition of $V_\mu$

    • Define the vector $V_\mu$ as:
      • $V_\mu = \partial_\nu h^\nu_\mu - \frac{1}{2} \partial_\mu h^\nu_\nu$
    • $h^\nu_\mu = \eta^{\nu\alpha}h_{\mu\alpha}$ and $h^\nu_\nu = \eta^{\nu\alpha}h_{\nu\alpha}$ is the trace of $h_{\mu\nu}$.
  2. Infinitesimal Gauge Transformation

    • Consider a small coordinate transformation:
      • $x^\mu \to x^\mu + \xi^\mu$
    • The metric perturbation $h_{\mu\nu}$ transforms as:
      • $h_{\mu\nu} \to h_{\mu\nu} + \partial_\mu \xi_\nu + \partial_\nu \xi_\mu$
    • $\xi_\mu = \eta_{\mu\alpha} \xi^\alpha$
  3. Transformation of $V_\mu$

    • Under the gauge transformation, $V_\mu$ transforms as:
      • $V_\mu \to V_\mu + \Box \xi_\mu$
    • $\Box = \partial^\alpha \partial_\alpha$ is the d'Alembert operator.
  4. Existence of Lorenz Gauge

    • It is always possible to find a gauge where $V_\mu = 0$ (Lorenz gauge).
    • This is achieved by choosing $\xi_\mu$ such that:
      • $\Box \xi_\mu = -V_\mu$
    • The existence of a solution to this inhomogeneous wave equation guarantees that the Lorenz gauge can always be reached.

16. Gravitational Wave Polarization and Gauge Transformations

  1. Plane Wave in TT Gauge

    • Consider a plane wave propagating in the positive z-direction:
      • $h_{\mu\nu}^{TT} = Re(C_{\mu\nu} e^{ik_\sigma x^\sigma})$
    • $k^\mu = (\omega, 0, 0, \omega)$ for a wave propagating along the positive z-axis.
  2. Polarization Tensor $C_{\mu\nu}$ for '+' Polarization

    • $C_{\mu\nu}$ is symmetric: $C_{\mu\nu} = C_{\nu\mu}$.
    • Transversality: $k^\mu C_{\mu\nu} = 0 \implies C_{0\nu} = -C_{3\nu}$
    • Tracelessness: $C^\mu_\mu = 0 \implies C_{00} = C_{33}, C_{11} = -C_{22}$.
    • For '+' polarization in standard TT gauge: $C_{11} = -C_{22} = C_+$ and $C_{12} = C_{21} = 0$, $C_{0\nu} = C_{3\nu} = 0$.
    • Explicitly:
      • $C_{00} = 0$
      • $C_{01} = 0$
      • $C_{02} = 0$
      • $C_{03} = 0$
      • $C_{10} = 0$
      • $C_{11} = C_+$
      • $C_{12} = 0$
      • $C_{13} = 0$
      • $C_{20} = 0$
      • $C_{21} = 0$
      • $C_{22} = -C_+$
      • $C_{23} = 0$
      • $C_{30} = 0$
      • $C_{31} = 0$
      • $C_{32} = 0$
      • $C_{33} = 0$
  3. Gauge Transformation

    • Consider a gauge transformation:
      • $\xi^\mu = (\alpha(x^\mu), \beta(x^\mu), 0, 0)$
    • The metric perturbation transforms as:
      • $h_{\mu\nu} \to h_{\mu\nu} + \partial_\mu \xi_\nu + \partial_\nu \xi_\mu$
    • Compute $\partial_\mu \xi_\nu + \partial_\nu \xi_\mu$, where $\xi_\nu = (-\alpha, \beta, 0, 0)$, by explicitly calculating all the partial derivatives.
    • The transformed metric perturbation is:
      • $h'_{00} = -2\partial_0 \alpha$
      • $h'_{01} = \partial_0 \beta - \partial_1 \alpha$
      • $h'_{02} = -\partial_2 \alpha$
      • $h'_{03} = -\partial_3 \alpha$
      • $h'_{10} = \partial_0 \beta - \partial_1 \alpha$
      • $h'_{11} = C^{+} \cos(\omega(t-z)) + 2\partial_1 \beta$
      • $h'_{12} = \partial_2 \beta$
      • $h'_{13} = \partial_3 \beta$
      • $h'_{20} = -\partial_2 \alpha$
      • $h'_{21} = \partial_2 \beta$
      • $h'_{22} = -C^{+} \cos(\omega(t-z))$
      • $h'_{23} = 0$
      • $h'_{30} = -\partial_3 \alpha$
      • $h'_{31} = \partial_3 \beta$
      • $h'_{32} = 0$
      • $h'_{33} = 0$

17. Gravitational Wave Polarization and Coordinate Transformations

  1. Relation between $\omega$ and $k$

    • We start with a wave vector $k^\mu = (\omega,,0,,k,,k)$.
    • Since gravitational waves propagate at the speed of light in vacuum, we must have $k_\mu,k^\mu = 0$.
    • Using the Minkowski metric $\eta_{\mu\nu} = \mathrm{diag}(-1,,+1,,+1,,+1)$, we find $$ k_\mu = (-\omega,,0,,k,,k). $$
    • The null condition $-\omega^2 + k^2 + k^2 = 0$ implies $\omega^2 = 2,k^2$, hence $\omega = \sqrt{2},k$.
  2. Polarization Tensor in the Rotated Frame

    • To describe the wave propagating along $(0,,k,,k)$, define new coordinates $(t',,x',,y',,z')$ by:
      • $x' = x$,
      • $z' = \tfrac{1}{\sqrt{2}},(y + z)$ (the propagation axis),
      • $y' = \tfrac{1}{\sqrt{2}},(y - z)$ (so that ${x',,y',,z'}$ is a right-handed system).
    • In the primed frame (TT gauge) for a wave propagating along $z'$, the non-zero components of the amplitude tensor for the plus and cross polarizations are:
      • $C^{'}{x'x'} = h'{+}$,
      • $C^{'}{y'y'} = -,h'{+}$,
      • $C^{'}{x'y'} = C^{'}{y'x'} = h'_{\times}$,
      • all other $C^{'}_{\mu'\nu'} = 0$.
  3. Coordinate Transformation and Final $C_{\mu\nu}$

    • The old coordinates $(t,,x,,y,,z)$ are related to the new ones via the transformation matrix $\Lambda^{\mu'}_{;\mu} = \tfrac{\partial x^{\mu'}}{\partial x^{\mu}}$.
    • After applying this transformation back to the original system, the non-zero components of $C_{\mu\nu}$ become:
      • $C_{xx} = h'_{+}$,
      • $C_{xy} = \tfrac{1}{\sqrt{2}},h'_{\times}$,
      • $C_{xz} = -,\tfrac{1}{\sqrt{2}},h'_{\times}$,
      • $C_{yy} = -,\tfrac{1}{2},h'_{+}$,
      • $C_{yz} = \tfrac{1}{2},h'_{+}$,
      • $C_{zz} = -,\tfrac{1}{2},h'_{+}$,
      • $C_{t\mu} = 0$ for all $\mu$.
    • These results ensure:
      • Transversality: $k^\mu,C_{\mu\nu} = 0$, which means $C_{t\mu} = 0$ here.
      • Tracelessness: $C_{xx} + C_{yy} + C_{zz} = 0$ in the spatial part.
      • Clear separation of polarizations: the off-diagonal parts $(xy,;xz)$ depend only on $h'{\times}$, and the diagonal parts $(xx;yy;zz)$ depend only on $h^{'}+$.

By examining this procedure, one sees explicitly how the $45^\circ$ rotation in the $(y,,z)$ plane isolates the usual plus and cross polarizations in the original $(t,,x,,y,,z)$ coordinates.


18. Deriving the Acceleration Equation in Cosmology

1. Start with the Friedmann and Fluid Equations

  • Friedmann:
    $H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^2}$
  • Fluid (continuity):
    $\dot{\rho} + 3H(\rho + p) = 0$

2. Differentiate the Friedmann Equation

$2H!\left(\frac{\ddot{a}}{a} - H^2\right) = \frac{8\pi G}{3},\dot{\rho} + 2,\frac{\kappa}{a^2},H$

3. Substitute the Fluid Equation

Use $\dot{\rho} = -3H(\rho + p)$: $\frac{\ddot{a}}{a} - H^2 = -\frac{4\pi G}{3}\bigl[3H(\rho+p)\bigr] + \frac{\kappa}{a^2}$

4. Rearrange and Insert $H^2$ from Friedmann

$\frac{\ddot{a}}{a} = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^2} - 4\pi G,H(\rho+p) + \frac{\kappa}{a^2}$

The $\frac{\kappa}{a^2}$ terms cancel out, so $\frac{\ddot{a}}{a} = \frac{8\pi G}{3}\rho - 4\pi G,H(\rho + p)$

5. Final Simplification

Substitute $H = \frac{\dot{a}}{a}$ and use $\dot{\rho} = -3H(\rho + p)$: $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\bigl(\rho + 3p\bigr)$

Hence, the acceleration equation is: $\boxed{\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\bigl(\rho + 3p\bigr).}$

19. Evolution of a Flat Universe with a Specific Equation of State

  1. Energy Density as a Function of Scale Factor

    • Given the equation of state $p = \frac{2}{3}\rho$, we use the fluid equation:
      • $\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + p) = 0$
      • $\frac{d\rho}{\rho} = -5 \frac{da}{a}$
    • Integrating, we obtain:
      • $\rho(a) = \rho_0 a^{-5}$ (since $a_0 = 1$)
  2. Scale Factor as a Function of Time

    • Substituting $\rho(a)$ into the Friedmann equation for a flat universe ($\kappa = 0$):
      • $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \rho_0 a^{-5}$
      • $\dot{a} = \sqrt{\frac{8\pi G \rho_0}{3}} a^{-3/2}$
    • Integrating, we find:
      • $a(t) = \left(\frac{25}{4}\frac{8\pi G \rho_0}{3}\right)^{1/5} t^{2/5} = \left(\frac{50\pi G \rho_0}{3}\right)^{1/5} t^{2/5}$
    • Using the condition $a(t_0) = 1$, we get:
      • $a(t) = \left(\frac{t}{t_0}\right)^{2/5}$ with $t_0 = \left(\frac{3}{50\pi G \rho_0}\right)^{1/2}$
  3. Hubble Parameter as a Function of Time

    • Using $H(t) = \frac{\dot{a}(t)}{a(t)}$ and the expression for $a(t)$:
      • $H(t) = \frac{2}{5t}$
  4. Energy Density as a Function of Time

    • Substituting $a(t)$ into $\rho(a) = \rho_0 a^{-5}$:
      • $\rho(t) = \rho_0 \left(\frac{3}{50\pi G \rho_0}\right) t^{-2} = \frac{3}{50\pi G t^2}$

20. Evolution of a Flat Universe with Non-Relativistic Matter and Cosmological Constant

  1. Derivation of (\Omega_M(a))

    • Given a spatially flat universe ($\kappa=0$) with non-relativistic matter and a cosmological constant $\Lambda$.
    • Friedmann equation: $H^2 = \frac{8\pi G}{3}(\rho_M + \rho_\Lambda) = \frac{8\pi G}{3}\rho_M + \frac{\Lambda}{3}$
    • $\rho_M(a) = \rho_0 a^{-3}$ (since $a_0 = 1$)
    • $\rho_\Lambda = \frac{\Lambda}{8\pi G}$
    • Critical density: $\rho_{\text{cr}}(t) = \frac{3H^2(t)}{8\pi G}$
    • Current critical density: $\rho_{\text{cr},0} = \frac{3H_0^2}{8\pi G}$
    • Current matter density parameter: $\Omega_0 = \frac{\rho_0}{\rho_{\text{cr},0}} = 0.3$
    • At present time: $H_0^2 = \frac{8\pi G}{3}\rho_0 + \frac{\Lambda}{3}$
    • Dividing the Friedmann equation by $H^2$: $1 = \frac{\rho_M}{\rho_{\text{cr}}} + \frac{\Lambda}{3H^2}$
    • Density parameter for matter: $\Omega_M(a) = \frac{\rho_M(a)}{\rho_{\text{cr}}(a)} = \frac{8\pi G \rho_0}{3H^2(a)a^3} = \Omega_0 \frac{H_0^2}{H^2(a)a^3}$
    • Expressing $\frac{\Lambda}{3}$ in terms of $H_0$ and $\Omega_0$: $\frac{\Lambda}{3} = H_0^2(1-\Omega_0)$
    • Substituting into $H^2(a)$: $H^2(a) = H_0^2(\Omega_0 a^{-3} + 1 - \Omega_0)$
    • Finally: $\Omega_M(a) = \frac{\Omega_0 a^{-3}}{\Omega_0 a^{-3} + 1 - \Omega_0}$
  2. Scale Factor at the Onset of Acceleration

    • Acceleration equation: $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_M - 2\rho_\Lambda)$
    • Acceleration begins when $\ddot{a} > 0$, i.e., $\rho_M < 2\rho_\Lambda$
    • Using $\rho_M(a) = \rho_0 a^{-3}$ and $\rho_\Lambda = \frac{\rho_0}{\Omega_0}(1-\Omega_0)$:
      • $\rho_0 a^{-3} < 2 \frac{\rho_0}{\Omega_0}(1-\Omega_0)$
      • $a^3 > \frac{\Omega_0}{2(1-\Omega_0)}$
    • Scale factor at the onset of acceleration: $a_\Lambda = \left(\frac{\Omega_0}{2(1-\Omega_0)}\right)^{1/3}$
    • With $\Omega_0 = 0.3$: $a_\Lambda = \left(\frac{0.3}{2(1-0.3)}\right)^{1/3} \approx 0.6$

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages