This is the official implementation of MTL-Det (JSTARs), a SAR ship detection method. For more details, please refer to:
Multitask learning for ship detection from synthetic aperture radar images [Paper]
Xin Zhang , Chunlei Huo , Nuo Xu , Hangzhi Jiang, Yong Cao, Lei Ni and Chunhong Pan
Please refer to install.md for installation.
Clone the code
git clone https://github.com/XinZhangNLPR/JSTARs_MTLDet.git
Download the model weight used in the paper:
Backbone | AP | AP@50 | AP@75 | AP_S | AP_M | AP_L | download | |
---|---|---|---|---|---|---|---|---|
MTL-Det | ResNeXt-101-64×4 | 68.0 | 89.5 | 77.7 | 68.7 | 69.6 | 25.8 |
Put the model to work_dirs/HTL_1x_renext/
Backbone | Off-shore | In-shore | ALL | download | |
---|---|---|---|---|---|
MTL-Det | ResNet-50 | 88.7 | 38.7 | 71.7 |
Put the model to work_dirs/HTL_1x_faster/
1.Multi-GPUs Test
./tools/dist_test.sh work_dirs/HTL_1x_faster/HTL_ins_faster_rcnn_r50_fpn_1x_hrsid.py work_dirs/HTL_1x_faster/epoch_11.pth 8 --eval mAP
2.Single-GPU Test
python tools/test.py work_dirs/HTL_1x_faster/HTL_ins_faster_rcnn_r50_fpn_1x_hrsid.py work_dirs/HTL_1x_faster/epoch_11.pth --eval mAP
@article{zhang2021multitask,
title={Multitask learning for ship detection from synthetic aperture radar images},
author={Zhang, Xin and Huo, Chunlei and Xu, Nuo and Jiang, Hangzhi and Cao, Yong and Ni, Lei and Pan, Chunhong},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
volume={14},
pages={8048--8062},
year={2021},
publisher={IEEE}
}