Skip to content

Commit

Permalink
Update _mixed.py
Browse files Browse the repository at this point in the history
  • Loading branch information
adtzlr committed Feb 17, 2024
1 parent bef6fdd commit 04375aa
Showing 1 changed file with 13 additions and 13 deletions.
26 changes: 13 additions & 13 deletions src/felupe/constitution/_mixed.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,16 +40,16 @@ class NearlyIncompressible(ConstitutiveMaterial):
\int_V p (J - \bar{J})\ dV
The volumetric part of the strain energy density function is denoted in Eq.
:eq:`nearlyincompressible-volumetric`.
:eq:`nearlyincompressible-volumetric` along with its first and second derivatives.
.. math::
:label: nearlyincompressible-volumetric
U(\bar{J}) &= \frac{K}{2} \left( \bar{J} - 1 \right)^2
\bar{U} &= \frac{K}{2} \left( \bar{J} - 1 \right)^2
U'(\bar{J}) &= K \left( \bar{J} - 1 \right)
\bar{U}' &= K \left( \bar{J} - 1 \right)
U''(\bar{J}) &= K
\bar{U}'' &= K
Parameters
----------
Expand Down Expand Up @@ -84,9 +84,8 @@ class NearlyIncompressible(ConstitutiveMaterial):
See Also
--------
ThreeFieldVariation : Hu-Washizu hydrostatic-volumetric selective
:math:`(\boldsymbol{u},p,J)` - three-field variation for nearly-incompressible
material formulations.
ThreeFieldVariation : Hu-Washizu hydrostatic-volumetric selective three-field
variation for nearly-incompressible material formulations.
"""

Expand Down Expand Up @@ -129,14 +128,14 @@ def gradient(self, x):
.. math::
\delta_\boldsymbol{u}(\Pi_{int}) &=
\int_V \left( \frac{\partial \psi}{\partial \boldsymbol{F}} +
\int_V \left( \frac{\partial \hat{\psi}}{\partial \boldsymbol{F}} +
p\ J \boldsymbol{F}^{-T} \right) : \delta\boldsymbol{F}\ dV
\delta_p(\Pi_{int}) &=
\int_V \left( J - \bar{J} \right)\ \delta p\ dV
\delta_\bar{J}(\Pi_{int}) &=
\int_V \left( U'(\bar{J}) - p \right)\ \delta \bar{J}\ dV
\int_V \left( \bar{U}' - p \right)\ \delta \bar{J}\ dV
"""
[F, p, J], statevars = x[:3], x[-1]
Expand Down Expand Up @@ -171,9 +170,10 @@ def hessian(self, x):
\Delta_\boldsymbol{u}\delta_\boldsymbol{u}(\Pi_{int}) &= \int_V
\delta\boldsymbol{F} : \left[
\frac{\partial^2 \psi}{\partial\boldsymbol{F}\ \partial\boldsymbol{F}} +
\frac{\partial^2 \hat{\psi}}
{\partial\boldsymbol{F}\ \partial\boldsymbol{F}} +
p\ J \left( \boldsymbol{F}^{-T} \otimes \boldsymbol{F}^{-T} -
\boldsymbol{F}^{-T} \overset{ik}{\odot} \boldsymbol{F}^{-T} \right)
\boldsymbol{F}^{-T} \overset{il}{\odot} \boldsymbol{F}^{-T} \right)
\right] : \Delta\boldsymbol{F}\ dV
\Delta_p\delta_\boldsymbol{u}(\Pi_{int}) &= \int_V
Expand All @@ -182,13 +182,13 @@ def hessian(self, x):
\Delta_\bar{J}\delta_\boldsymbol{u}(\Pi_{int}) &= \int_V
\delta\boldsymbol{F} : \boldsymbol{0}\ \Delta \bar{J}\ dV
\Delta_p\delta_p(\Pi_{int}) &= \int_V \delta p\ 0\ \Delta p\ dV
\Delta_p\delta_p(\Pi_{int}) &= \int_V \delta p\ (0)\ \Delta p\ dV
\Delta_p\delta_\bar{J}(\Pi_{int}) &= \int_V
\delta \bar{J}\ (-1)\ \Delta p\ dV
\Delta_\bar{J}\delta_\bar{J}(\Pi_{int}) &= \int_V
\delta \bar{J}\ U''(\bar{J})\ \Delta \bar{J}\ dV
\delta \bar{J}\ \bar{U}''\ \Delta \bar{J}\ dV
"""
[F, p, J], statevars = x[:3], x[-1]
Expand Down

0 comments on commit 04375aa

Please sign in to comment.