Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

core\feat: #26 crowd seg generator #54

Merged
merged 1 commit into from
Apr 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 139 additions & 0 deletions core/seg_tgce/data/crowd_seg/generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
import logging
import os
from typing import List

import numpy as np
from keras.preprocessing.image import img_to_array, load_img
from keras.utils import Sequence
from matplotlib import pyplot as plt

LOGGER = logging.getLogger(__name__)


class ImageDataGenerator(Sequence): # pylint: disable=too-many-instance-attributes
def __init__( # pylint: disable=too-many-arguments
self,
image_dir,
mask_dir,
n_classes,
image_size=(256, 256),
batch_size=32,
shuffle=True,
):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.image_size = image_size
self.batch_size = batch_size
self.shuffle = shuffle
self.image_filenames = sorted(
[
filename
for filename in os.listdir(image_dir)
if filename.endswith(".png")
]
)
self.n_scorers = len(os.listdir(mask_dir))
self.scorers_tags = sorted(os.listdir(mask_dir))
print(f"Scorer tags: {self.scorers_tags}")
self.n_classes = n_classes
self.on_epoch_end()

def __len__(self):
return int(np.ceil(len(self.image_filenames) / self.batch_size))

def __getitem__(self, index):
batch_filenames = self.image_filenames[
index * self.batch_size : (index + 1) * self.batch_size
]
images, masks = self.__data_generation(batch_filenames)
return images, masks

def on_epoch_end(self):
if self.shuffle:
np.random.shuffle(self.image_filenames)

def visualize_sample(
self,
scorers: List[str],
batch_index=1,
sample_index=1,
):
images, masks = self[batch_index]

fig, axes = plt.subplots(len(scorers), self.n_classes + 1)
for scorer_num, scorer in enumerate(scorers):
for class_num in range(self.n_classes):
axes[scorer_num][0].imshow(images[sample_index].astype(int))
axes[scorer_num][class_num + 1].imshow(
masks[sample_index, scorer_num, class_num]
)
axes[scorer_num][0].axis("off")
axes[scorer_num][class_num + 1].axis("off")
axes[scorer_num][0].set_title(f"Image (ann {scorer})")
axes[scorer_num][class_num + 1].set_title(f"Class {class_num}")

plt.show()
return fig

def __data_generation(self, batch_filenames):
images = np.empty((self.batch_size, *self.image_size, 3))
masks = np.empty(
(
self.batch_size,
self.n_scorers,
self.n_classes,
*self.image_size,
)
)

for batch, filename in enumerate(batch_filenames):
img_path = os.path.join(self.image_dir, filename)
for scorer, scorer_dir in enumerate(self.scorers_tags):
scorer_mask_dir = os.path.join(self.mask_dir, scorer_dir)
mask_path = os.path.join(scorer_mask_dir, filename)
if os.path.exists(mask_path):
mask_raw = load_img(
mask_path,
color_mode="grayscale",
target_size=self.image_size,
)
mask = img_to_array(mask_raw)
for class_num in range(self.n_classes):
masks[batch][scorer][class_num] = np.where(
mask == class_num, 1, 0
).reshape(*self.image_size)
plt.show()
else:
LOGGER.warning(
(
"Mask not found for scorer %s and image %s "
"Filling up with zeros."
),
scorer_dir,
filename,
)
masks[batch, scorer] = np.zeros((self.n_classes, *self.image_size))

image = load_img(img_path, target_size=self.image_size)
image = img_to_array(image)

images[batch] = image

return images, masks


if __name__ == "__main__":
val_gen = ImageDataGenerator(
image_dir="/home/brandon/unal/maestria/datasets/Histology Data/patches/Val",
mask_dir="/home/brandon/unal/maestria/datasets/Histology Data/masks/Val",
batch_size=16,
n_classes=6,
)
print(f"Train len: {len(val_gen)}")
print(f"Train masks scorers: {val_gen.n_scorers}")
print(f"Train masks scorers tags: {val_gen.scorers_tags}")
val_gen.visualize_sample(
batch_index=8,
sample_index=8,
scorers=["NP8", "NP16", "NP21", "expert"],
)
8 changes: 0 additions & 8 deletions core/seg_tgce/data/crowd_seg/map.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,3 @@ def find_annotators_alias(data_target: DataTarget, base_dir_path: Path) -> list[
path.name for path in data_target_path.iterdir() if path.is_dir()
]
return annotators_alias


def produce_tf_dataset(
data_target: DataTarget, base_dir_path: Path, annotator_alias: str
) -> Path:
data_target_path = base_dir_path / MASKS_SUB_DIR / data_target.value
tf_image_folder = data_target_path / annotator_alias
return tf_image_folder
33 changes: 20 additions & 13 deletions core/seg_tgce/data/crowd_seg/visualizer.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,15 @@
import os
from typing import List, Tuple
from typing import Tuple

import matplotlib.pyplot as plt
import cv2
from cv2 import imread # pylint: disable=no-name-in-module


class BaseDirectoryNotFoundError(Exception):
pass


def visualize_data(
def visualize_data( # pylint: disable=too-many-locals
x_ini_values: Tuple[int, ...],
y_ini_values: Tuple[int, ...],
labelers: Tuple[str, str],
Expand All @@ -30,14 +31,20 @@ def visualize_data(
img_path = (
f"{base_path}/patches/Train/core_A0AL_AN_x_ini_{x_ini}_y_ini_{y_ini}.png"
)
non_expert_mask_path = f"{base_path}/masks/Train/{labelers[0]}/core_A0AL_AN_x_ini_{x_ini}_y_ini_{y_ini}.png"
expert_mask_path = f"{base_path}/masks/Train/{labelers[1]}/core_A0AL_AN_x_ini_{x_ini}_y_ini_{y_ini}.png"
non_expert_mask_path = (
f"{base_path}/masks/Train/{labelers[0]}/"
f"core_A0AL_AN_x_ini_{x_ini}_y_ini_{y_ini}.png"
)
expert_mask_path = (
f"{base_path}/masks/Train/{labelers[1]}/"
f"core_A0AL_AN_x_ini_{x_ini}_y_ini_{y_ini}.png"
)

im = cv2.imread(img_path)
non_expert_mask = cv2.imread(non_expert_mask_path, -1)
expert_mask = cv2.imread(expert_mask_path, -1)
img = imread(img_path)
non_expert_mask = imread(non_expert_mask_path, -1)
expert_mask = imread(expert_mask_path, -1)

axes[i, 0].imshow(im)
axes[i, 0].imshow(img)
axes[i, 0].axis("off")
axes[i, 1].imshow(non_expert_mask, cmap="Pastel1")
axes[i, 1].axis("off")
Expand All @@ -56,12 +63,12 @@ def visualize_data(
x_ini_values = 1074, 1432, 2148
y_ini_values = 1074, 1432, 2148
labelers = "NP1", "expert"
base_path = "../../../datasets/Histology Data"
save_path = "../docs/source/resources/crowd-seg-example-instances.png"
BASE_PATH = "../../../datasets/Histology Data"
SAVE_PATH = "../docs/source/resources/crowd-seg-example-instances.png"
visualize_data(
x_ini_values=x_ini_values,
y_ini_values=y_ini_values,
labelers=labelers,
base_path=base_path,
save_path=save_path,
base_path=BASE_PATH,
save_path=SAVE_PATH,
)
Empty file added core/seg_tgce/py.typed
Empty file.
Loading