generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Kye
committed
Sep 30, 2023
1 parent
3c7b7a4
commit a5609d1
Showing
1 changed file
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
import torch | ||
|
||
class QueenBeeGa: | ||
""" | ||
Queen Bee evolution for genetic algos | ||
Inspired by the evolution of bees, the fittest solution is designated | ||
and the rest of the population contends to mate with it. | ||
The strong exploitation is balanced by a higher than a normal mutation rate. | ||
Reference: | ||
--------- | ||
https://www.researchgate.net/publication/228961729_A_Queen_Bee_GA_for_optimization | ||
""" | ||
def __init__( | ||
self, | ||
goal: int ="Attention is all you need", | ||
pop_size: int = 100, | ||
mutation_prob: float = 0.04, | ||
strong_mutation_rate: float = 0.1, | ||
strong_mutation_prob: float = 0.25, | ||
num_tournament_participants: int = 25 | ||
): | ||
""" | ||
QueenBeeGa with params and initial configs | ||
Parameters | ||
---------- | ||
goal: str | ||
The goal string to be optimized | ||
pop_size: int | ||
Number of ants | ||
mutation_prob: float | ||
Mutation rate | ||
strong_mutation_rate: float | ||
Strong mutation rate | ||
strong_mutation_prob: float | ||
Strong mutation probability | ||
num_tournament_participants: int | ||
Number of tournament participants | ||
""" | ||
self.goal = goal | ||
self.pop_size = pop_size | ||
self.mutation_prob = mutation_prob | ||
self.strong_mutation_rate = strong_mutation_rate | ||
self.strong_mutation_prob = strong_mutation_prob | ||
self.num_tournament_participants = num_tournament_participants | ||
|
||
self.gene_length = len(goal) | ||
self.gene_midpoint = self.gene_length // 2 | ||
self.target_gene = self.encode(goal) | ||
|
||
self.strong_mutate_pool_size = strong_mutation_rate * pop_size | ||
self.num_code_mutate = mutation_prob * self.gene_length | ||
self.strong_num_code_mutate = strong_mutation_prob * self.gene_length | ||
|
||
self.pool = torch.randint(0, 255, (pop_size, self.gene_length)) | ||
self.queen = None | ||
self.queen_fitness = None | ||
self.generation = 0 | ||
|
||
@staticmethod | ||
def encode(s): | ||
"""Convert string to it's values""" | ||
return torch.tensor([ord(c) for c in s]) | ||
|
||
@staticmethod | ||
def decode(t): | ||
"""Convert ASCII values tensor back to string""" | ||
return "".join([chr(i) for i in t.tolist()]) | ||
|
||
def run(self, max_generations: int = 1000): | ||
""" | ||
Run the queen genertic algorithm evolution | ||
Parameters: | ||
----------- | ||
max_generations: int | ||
Maximum number of generations | ||
""" | ||
for _ in range(max_generations): | ||
self.generation += 1 | ||
print(f"Generation: {self.generation}") | ||
self._evolve() | ||
if self._check_convergence(): | ||
pass | ||
|
||
def _evolve(self): | ||
""" | ||
Execute one step of the evolution process. | ||
""" | ||
|
||
# Sort population by fitness | ||
fitnesses = 1. / torch.square(self.pool - self.target_gene).sum(dim=-1) | ||
indices = fitnesses.sort(descending=True).indices | ||
self.pool, fitnesses = self.pool[indices], fitnesses[indices] | ||
|
||
# Display every generation | ||
if self.queen is not None: | ||
print("queen:") | ||
print(f"{self.decode(self.queen)} ({self.queen_fitness.item():.3f})\n") | ||
for gene, fitness in zip(self.pool, fitnesses): | ||
print(f"{self.decode(gene)} ({fitness.item():.3f})") | ||
|
||
# If one of the children has a better fitness than queen, that child becomes the new queen | ||
# and the queen replaces the worst bee in the population | ||
if self.queen is not None and self.queen_fitness < fitnesses[0]: | ||
self.pool = torch.cat((self.pool, self.queen[None, :]), dim=0) | ||
fitnesses = torch.cat((fitnesses, self.queen_fitness[None]), dim=0) | ||
self.queen = self.queen_fitness = None | ||
|
||
# Separate the queen bee from the rest of the population | ||
if self.queen is None: | ||
self.queen, self.pool = self.pool[0], self.pool[1:] | ||
self.queen_fitness, fitnesses = fitnesses[0], fitnesses[1:] | ||
|
||
# Deterministic tournament selection | ||
contender_ids = torch.randn((self.pop_size - 1, self.pop_size - 1)).argsort(dim=-1)[..., :self.num_tournament_participants] | ||
participants, tournaments = self.pool[contender_ids], fitnesses[contender_ids] | ||
top_winner = tournaments.topk(1, dim=-1, largest=True, sorted=False).indices | ||
top_winner = top_winner.unsqueeze(-1).expand(-1, -1, self.gene_length) | ||
parents = participants.gather(1, top_winner).squeeze(1) | ||
|
||
# Cross over all chosen drones with the queen | ||
queen_parents = self.queen.unsqueeze(0).expand(self.pop_size - 1, self.gene_length) | ||
self.pool = torch.cat((queen_parents[:, :self.gene_midpoint], parents[:, self.gene_midpoint:]), dim=-1) | ||
|
||
# Mutate genes in population | ||
mutate_mask = torch.randn(self.pool.shape).argsort(dim=-1) < self.num_code_mutate | ||
noise = torch.randint(0, 2, self.pool.shape) * 2 - 1 | ||
mutated_pool = torch.where(mutate_mask, self.pool + noise, self.pool) | ||
|
||
strong_mutate_mask = torch.randn(self.pool.shape).argsort(dim=-1) < self.strong_num_code_mutate | ||
noise = torch.randint(0, 2, self.pool.shape) * 2 - 1 | ||
strong_mutated_pool = torch.where(strong_mutate_mask, self.pool + noise, self.pool) | ||
|
||
strong_mutate_pool_mask = torch.randn(self.pop_size - 1).argsort(dim=-1) < self.strong_mutate_pool_size | ||
self.pool = torch.where(strong_mutate_pool_mask[:, None], strong_mutated_pool, mutated_pool) | ||
self.pool.clamp_(0, 255) | ||
|
||
def _check_convergence(self): | ||
""" | ||
Check if any of the solutions has achieved the goal | ||
""" | ||
fitnesses = 1. / torch.square(self.pool - self.target_gene).sum(dim=-1) | ||
return (fitnesses == float('inf')).any().item() | ||
|
||
# Usage: | ||
optimizer = QueenBeeGa() | ||
optimizer.run(max_generations=100) |