forked from lizbethna/HMMprogressionOrdinal
-
Notifications
You must be signed in to change notification settings - Fork 0
miguel-barreto-univ/HMM-Progression-Ordinal-Outcomes
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
################################################## Paper: A hidden Markov model to address measurement errors in ordinal response scale and non-decreasing process Authors: Lizbeth Naranjo (1), Luz Judith R. Esparza (2), Carlos J. Perez (3). (1) Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico (UNAM), Mexico (2) Catedra CONACyT - Universidad Autonoma de Aguascalientes, Mexico (3) Departamento de Matematicas, Facultad de Veterinaria, Universidad de Extremadura, Spain Journal: Mathematics Submitted. Under Revision. ################################################## Instructions to run the codes in R and JAGS are provided. The codes are applied to obtain a similar analysis as in Section 4 ‘Simulation example’, but without cross-validation, and Section 5 ‘Aortic aneurysm progression’. ################################################## ################################################## FILES For Section 4 ‘Simulation example’ The file ‘HMMprogressionOrdinal.R’ contains the R code. The JAGS code is run from this R file. The file ‘HMMprogressionOrdinal.bug' contains the JAGS model. For Section 5 ‘Aortic aneurysm progression’ The file ‘HMManeur.R’ contains the R code. The JAGS code is run from this R file.. The file ‘HMManeur.bug' contains the JAGS model. ################################################## To run the files, do the following. 1.- Download JAGS from www.mcmc-jags.sourceforge.net/ 2.- Install the packages necessary to run the R file. These are indicated in the R file. 3.- Change the address indicated in ‘setwd()’. setwd("HERE"). This is the address where the file ‘HMMprogressionOrdinal.bug’ and ‘HMManeur.bug' are in. ##################################################
About
A hidden Markov model to address measurement errors in an ordinal response scale and non-decreasing processes
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- R 100.0%