Adaptive Multimodal Prompt for Human-Object Interaction with Local Feature Enhanced Transformer (AMP-HOI)
AMP-HOI is an end-to-end transformer-based and cnn-based human-object interaction (HOI) detector. [Paper]
- Motivation: (1) The loss of crucial features from the original modality during contrastive learning. (2) The limited ability of Transformer-based network architectures to extract local features from samples. (3) There is still room for improvement in the application of prompt learning on HOI.
- Components: (1) We proposed an Adaptive Multimodal Prompt module that facilitates the interaction of multimodal cues and provides specific and applicable cues for different modalities. (2) We introduced a novel multimodal feature extraction module called the Local Feature Enhanced Transformer (LFET), which effectively extracts multimodal features from both global and local perspectives.
Our code is built upon CLIP. This repo requires to install PyTorch and torchvision, as well as small additional dependencies.
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
pip install ftfy regex tqdm numpy Pillow matplotlib
The experiments are mainly conducted on HICO-DET dataset. We follow this repo to prepare the HICO-DET dataset.
HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz
) to the data
directory. We use the annotation files provided by the PPDM authors. We re-organize the annotation files with additional meta info, e.g., image width and height. The annotation files can be downloaded from here. The downloaded files have to be placed as follows. Otherwise, please replace the default path to your custom locations in datasets/hico.py.
|─ data
│ └─ hico_20160224_det
| |- images
| | |─ test2015
| | |─ train2015
| |─ annotations
| | |─ trainval_hico_ann.json
| | |─ test_hico_ann.json
: :
Run this command to train the model in HICO-DET dataset
python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py \
--batch_size 8 \
--output_dir [path to save checkpoint] \
--epochs 30 \
--lr 1e-4 --min-lr 1e-7 \
--hoi_token_length 10 \
--enable_dec \
--enable_resnet50 \
--enable_gru \
--enable_text_lambda \
--enable_visual_lambda1 \
--enable_visual_lambda2 \
--lamb 0.6 \
--enable_unified_prompt \
--dataset_file hico
Run this command to evaluate the model on HICO-DET dataset
python main.py --eval \
--batch_size 1 \
--output_dir [path to save results] \
--hoi_token_length 10 \
--enable_dec \
--pretrained [path to the pretrained model] \
--eval_size 256 [or 224 448 ...] \
--test_score_thresh 1e-4 \
--enable_resnet50 \
--enable_gru \
--enable_text_lambda \
--enable_visual_lambda1 \
--enable_visual_lambda2 \
--lamb 0.6 \
--enable_unified_prompt \
--dataset_file hico
Model | dataset | HOI Tokens | AP seen | AP unseen | Full | Checkpoint |
---|---|---|---|---|---|---|
AMP-HOI |
HICO-DET | 10 | 25.91 | 19.23 | 24.44 | params |
Please consider citing our paper if it helps your research.
None