Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] fit size reduction #363

Open
wants to merge 2 commits into
base: devel
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions R/Lrnr_base.R
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,9 @@ Lrnr_base <- R6Class(
}
new_object <- self$clone() # copy parameters, and whatever else
new_object$set_train(fit_object, task)
if (getOption("sl3.reduce_fit")) {
new_object$reduce_fit(check_preds = FALSE)
}
return(new_object)
},
set_train = function(fit_object, training_task) {
Expand Down Expand Up @@ -335,6 +338,53 @@ Lrnr_base <- R6Class(
} else {
return(task)
}
},
reduce_fit = function(fit_object = NULL, check_preds = TRUE, set_train = TRUE) {
if (is.null(fit_object)) {
fit_object <- self$fit_object
}
if (check_preds) {
preds_full <- self$predict(task)
}


# try reducing the size
size_full <- true_obj_size(fit_object)

# see what's taking up the space
# element_sizes <- sapply(fo, true_obj_size)
# ranked <- sort(element_sizes/size_full, decreasing = TRUE)

# by default, drop out call
# within(fit_object, rm(private$.fit_can_remove))
keep <- setdiff(names(fit_object), private$.fit_can_remove)

# gotta preserve the attributes (not sure why they're getting dropped)
attrs <- attributes(fit_object)
attrs$names <- keep
reduced <- fit_object[keep]
attributes(reduced) <- attrs
fit_object <- reduced
size_reduced <- true_obj_size(fit_object)
reduction_percent <- 1 - size_reduced / size_full

if (getOption("sl3.verbose")) {
message(sprintf("Fit object size reduced %0.0f%%", 100 * reduction_percent))
}


if (set_train) {
self$set_train(fit_object, self$training_task)
}


# verify prediction still works
if (check_preds) {
preds_reduced <- self$predict(task)
assert_that(all.equal(preds_full, preds_reduced))
}

return(fit_object)
}
),
active = list(
Expand Down Expand Up @@ -399,6 +449,7 @@ Lrnr_base <- R6Class(
.required_packages = NULL,
.properties = list(),
.custom_chain = NULL,
.fit_can_remove = c("call"),
.train_sublearners = function(task) {
# train sublearners here
return(NULL)
Expand Down
1 change: 1 addition & 0 deletions R/Lrnr_glm_fast.R
Original file line number Diff line number Diff line change
Expand Up @@ -157,6 +157,7 @@ Lrnr_glm_fast <- R6Class(
}
return(predictions)
},
.fit_can_remove = c("XTX", "offset"),
.required_packages = c("speedglm")
)
)
3 changes: 1 addition & 2 deletions R/Lrnr_hal9001.R
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,6 @@ Lrnr_hal9001 <- R6Class(

return(fit_object)
},

.predict = function(task = NULL) {
predictions <- stats::predict(
self$fit_object,
Expand All @@ -111,7 +110,7 @@ Lrnr_hal9001 <- R6Class(
}
return(predictions)
},

.fit_can_remove = c("lasso_fit", "x_basis"),
.required_packages = c("hal9001", "glmnet")
)
)
1 change: 1 addition & 0 deletions R/Lrnr_xgboost.R
Original file line number Diff line number Diff line change
Expand Up @@ -194,6 +194,7 @@ Lrnr_xgboost <- R6Class(

return(predictions)
},
.fit_can_remove = c("raw", "call"),
.required_packages = c("xgboost")
)
)
10 changes: 10 additions & 0 deletions R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -155,6 +155,16 @@ true_obj_size <- function(obj) {
length(serialize(obj, NULL))
}

#' @keywords internal
check_fit_sizes <- function(fit) {
fo <- fit$fit_object
# see what's taking up the space
element_sizes <- sapply(fo, true_obj_size)
ranked <- sort(element_sizes / sum(element_sizes), decreasing = TRUE)

return(ranked)
}

################################################################################

#' Drop components from learner fits
Expand Down
6 changes: 3 additions & 3 deletions R/zzz.R
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,7 @@ sl3Options <- function(o, value) {
}
if (is.null(value)) {
res[o] <- list(NULL)
}
else {
} else {
res[[o]] <- value
}
options(res[o])
Expand All @@ -62,7 +61,8 @@ sl3Options <- function(o, value) {
"sl3.pcontinuous" = 0.05,
"sl3.max_p_missing" = 0.5,
"sl3.transform.offset" = TRUE,
"sl3.enable.future" = TRUE
"sl3.enable.future" = TRUE,
"sl3.reduce_fit" = FALSE
)
# for (i in setdiff(names(opts),names(options()))) {
# browser()
Expand Down
44 changes: 44 additions & 0 deletions tests/testthat/test-reduce_fit.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@

set.seed(1234)

# TODO: maybe check storage at different n to get rate
n <- 1e4
p <- 100
# these two define the DGP (randomly)
p_X <- runif(p, 0.2, 0.8)
beta <- rnorm(p)

# simulate from the DGP
X <- sapply(p_X, function(p_Xi) rbinom(n, 1, p_Xi))
p_Yx <- plogis(X %*% beta)
Y <- rbinom(n, 1, p_Yx)
data <- data.table(X, Y)

# generate the sl3 task and learner
outcome <- "Y"
covariates <- setdiff(names(data), outcome)
task <- make_sl3_Task(data, covariates, outcome)

options(sl3.verbose = TRUE)
options(sl3.reduce_fit = TRUE)
test_reduce_fit <- function(learner) {
fit <- learner$train(task)
print(sl3:::check_fit_sizes(fit))
if (!getOption("sl3.reduce_fit")) {
# if we aren't automatically reducing, do it manually
fit_object <- fit$reduce_fit()
}

still_present <- intersect(
names(fit$fit_object),
fit$.__enclos_env__$private$.fit_can_remove
)

expect_equal(length(still_present), 0)
}

test_reduce_fit(make_learner(Lrnr_glmnet))
test_reduce_fit(make_learner(Lrnr_ranger))
test_reduce_fit(make_learner(Lrnr_glm_fast))
test_reduce_fit(make_learner(Lrnr_xgboost))
test_reduce_fit(make_learner(Lrnr_hal9001))